916 resultados para The Performance Standard 6 –PS 6-
Resumo:
Concrete substructures are often subjected to environmental deterioration, such as sulfate and acid attack, which leads to severe damage and causes structure degradation or even failure. In order to improve the durability of concrete, the High Performance Concrete (HPC) has become widely used by partially replacing cement with pozzolanic materials. However, HPC degradation mechanisms in sulfate and acidic environments are not completely understood. It is therefore important to evaluate the performance of the HPC in such conditions and predict concrete service life by establishing degradation models. This study began with a review of available environmental data in the State of Florida. A total of seven bridges have been inspected. Concrete cores were taken from these bridge piles and were subjected for microstructural analysis using Scanning Electron Microscope (SEM). Ettringite is found to be the products of sulfate attack in sulfate and acidic condition. In order to quantitatively analyze concrete deterioration level, an image processing program is designed using Matlab to obtain quantitative data. Crack percentage (Acrack/Asurface) is used to evaluate concrete deterioration. Thereafter, correlation analysis was performed to find the correlation between five related variables and concrete deterioration. Environmental sulfate concentration and bridge age were found to be positively correlated, while environmental pH level was found to be negatively correlated. Besides environmental conditions, concrete property factor was also included in the equation. It was derived from laboratory testing data. Experimental tests were carried out implementing accelerated expansion test under controlled environment. Specimens of eight different mix designs were prepared. The effect of pozzolanic replacement rate was taken into consideration in the empirical equation. And the empirical equation was validated with existing bridges. Results show that the proposed equations compared well with field test results with a maximum deviation of ± 20%. Two examples showing how to use the proposed equations are provided to guide the practical implementation. In conclusion, the proposed approach of relating microcracks to deterioration is a better method than existing diffusion and sorption models since sulfate attack cause cracking in concrete. Imaging technique provided in this study can also be used to quantitatively analyze concrete samples.
Resumo:
Thesis (Ph.D, Computing) -- Queen's University, 2016-09-30 09:55:51.506
Resumo:
Pantaneiro horses were submitted to a performance test.
Resumo:
The topic of the Ph.D project focuses on the modelling of the soil-water dynamics inside an instrumented embankment section along Secchia River (Cavezzo (MO)) in the period from 2017 to 2018 and the quantification of the performance of the direct and indirect simulations . The commercial code Hydrus2D by Pc-Progress has been chosen to run the direct simulations. Different soil-hydraulic models have been adopted and compared. The parameters of the different hydraulic models are calibrated using a local optimization method based on the Levenberg - Marquardt algorithm implemented in the Hydrus package. The calibration program is carried out using different types of dataset of observation points, different weighting distributions, different combinations of optimized parameters and different initial sets of parameters. The final goal is an in-depth study of the potentialities and limits of the inverse analysis when applied to a complex geotechnical problem as the case study. The second part of the research focuses on the effects of plant roots and soil-vegetation-atmosphere interaction on the spatial and temporal distribution of pore water pressure in soil. The investigated soil belongs to the West Charlestown Bypass embankment, Newcastle, Australia, that showed in the past years shallow instabilities and the use of long stem planting is intended to stabilize the slope. The chosen plant species is the Malaleuca Styphelioides, native of eastern Australia. The research activity included the design and realization of a specific large scale apparatus for laboratory experiments. Local suction measurements at certain intervals of depth and radial distances from the root bulb are recorded within the vegetated soil mass under controlled boundary conditions. The experiments are then reproduced numerically using the commercial code Hydrus 2D. Laboratory data are used to calibrate the RWU parameters and the parameters of the hydraulic model.
Resumo:
The accurate representation of the Earth Radiation Budget by General Circulation Models (GCMs) is a fundamental requirement to provide reliable historical and future climate simulations. In this study, we found reasonable agreement between the integrated energy fluxes at the top of the atmosphere simulated by 34 state-of-the-art climate models and the observations provided by the Cloud and Earth Radiant Energy System (CERES) mission on a global scale, but large regional biases have been detected throughout the globe. Furthermore, we highlighted that a good agreement between simulated and observed integrated Outgoing Longwave Radiation (OLR) fluxes may be obtained from the cancellation of opposite-in-sign systematic errors, localized in different spectral ranges. To avoid this and to understand the causes of these biases, we compared the observed Earth emission spectra, measured by the Infrared Atmospheric Sounding Interferometer (IASI) in the period 2008-2016, with the synthetic radiances computed on the basis of the atmospheric fields provided by the EC-Earth GCM. To this purpose, the fast σ-IASI radiative transfer model was used, after its validation and implementation in EC-Earth. From the comparison between observed and simulated spectral radiances, a positive temperature bias in the stratosphere and a negative temperature bias in the middle troposphere, as well as a dry bias of the water vapor concentration in the upper troposphere, have been identified in the EC-Earth climate model. The analysis has been performed in clear-sky conditions, but the feasibility of its extension in the presence of clouds, whose impact on the radiation represents the greatest source of uncertainty in climate models, has also been proven. Finally, the analysis of simulated and observed OLR trends indicated good agreement and provided detailed information on the spectral fingerprints of the evolution of the main climate variables.
Resumo:
Continuum parallel robots (CPRs) are manipulators employing multiple flexible beams arranged in parallel and connected to a rigid end-effector. CPRs promise higher payload and accuracy than serial CRs while keeping great flexibility. As the risk of injury during accidental contacts between a human and a CPR should be reduced, CPRs may be used in large-scale collaborative tasks or assisted robotic surgery. There exist various CPR designs, but the prototype conception is rarely based on performance considerations, and the CPRs realization in mainly based on intuitions or rigid-link parallel manipulators architectures. This thesis focuses on the performance analysis of CPRs, and the tools needed for such evaluation, such as workspace computation algorithms. In particular, workspace computation strategies for CPRs are essential for the performance assessment, since the CPRs workspace may be used as a performance index or it can serve for optimal-design tools. Two new workspace computation algorithms are proposed in this manuscript, the former focusing on the workspace volume computation and the certification of its numerical results, while the latter aims at computing the workspace boundary only. Due to the elastic nature of CPRs, a key performance indicator for these robots is the stability of their equilibrium configurations. This thesis proposes the experimental validation of the equilibrium stability assessment on a real prototype, demonstrating limitations of some commonly used assumptions. Additionally, a performance index measuring the distance to instability is originally proposed in this manuscript. Differently from the majority of the existing approaches, the clear advantage of the proposed index is a sound physical meaning; accordingly, the index can be used for a more straightforward performance quantification, and to derive robot specifications.
Resumo:
The field of use of membranes is wide and ranges from the automotive industry to biomedical uses. Many formulations and compositions find a niche where they are able to improve efficiency, running cost and quality of the product. The aim of this research is to expand GVS’s product portfolio introducing a new membrane formulation. A series of additives were researched and evaluated, adding them to the membrane solutions, which were then cast and characterised using techniques like Scanning Electron Microscopy (SEM), poroscopy, FT-IT ATR and measurements like Water Break Through (WBT), Air Flow (AF), thickness. This study ultimately focused on one additive, which effect on the membranes was studied in various compositions. Interesting insights were also collected on the stability of the polymer solutions over time, which was found to change the membrane properties significantly, mainly affecting airflow and water breakthrough. Properties of the membranes were studied to find possible correlations to the amount of additive. The additive seems however to change the membrane porometry considerably depending on the time of immersion in the water bath. A new procedure to yield uniform unsupported polymeric membranes for tensile tests was developed. The additive was found to reduce elongation at break and decrease tensile strength of the membranes, possibly hinting toward plasticization of the product.
Resumo:
L'Electron-Ion Collider è un futuro acceleratore di particelle che approfondirà la nostra conoscenza riguardo l'interazione forte tramite la collisione di elettroni con nuclei e protoni. Uno dei progetti attualmente considerati per la costruzione del rivelatore, il dual-radiator RICH, prevede l'impiego di due radiatori Cherenkov, sui quali verranno montati dei fotorivelatori per rilevare l'emissione della luce Cherenkov e risalire alla massa delle particelle. L'opzione di base per questi rivelatori sono i sensori al silicio SiPM. Questo lavoro di tesi si basa sullo studio delle prestazioni di un prototipo per l'acquisizione dei dati rilevati dai SiPM che sfrutta l'effetto termoelettrico per raffreddare la zona in cui sono situati i sensori. L'analisi dei dati acquisiti ha portato alla conclusione che le prestazioni del prototipo sono confrontabili con quelle misurate all'interno di una camera climatica quando si trovano alla stessa temperatura.
Resumo:
The construction sector is responsible for generating large environmental impacts in order to minimize these impacts, environmental standards and seals for the construction were created. This article presents a comparative study between the preliminary requirements of ISO 21931: 2010 Sustainable Building, the requirements of AQUA-HQE stamps, LEED and the Performance Standard NBR 15575: 2013. For this, a literature search was conducted to carry out a comparative analysis of the requirements of each of them in order to know those common to all of them. As a result of this work was identified that the standard of performance, the AQUA seal and LEED are well aligned with the sustainability criteria, comfort and health of the user, and has the ISO 21931 standard has some of these items as options.
Resumo:
Background: Walking speed seems to be related to aerobic capacity, lower limb strength, and functional mobility, however it is not clear whether there is a direct relationship between improvement in muscle strength and gait performance in early postmenopausal women. Objective: To evaluate the effect of muscle strengthening exercises on the performance of the 6-minute walk test in women within 5 years of menopause. Methods: The women were randomized into control group (n=31), which performed no exercise, and exercise group (n=27), which performed muscle strengthening exercises. The exercises were performed twice a week for 3 months. The exercise protocol consisted of warm-up, stretching, and strengthening of the quadriceps, hamstring, calf, tibialis anterior, gluteus maximus, and abdominal muscles, followed by relaxation. Muscular strength training started with 60% of 1MR (2 series of 10-15 repetitions), reaching 85% until the end of the 3-month period (4 series of 6 repetitions each). Results: The between-group comparisons pre- and post-intervention did not show any difference in distance walked, heart rate or blood pressure (p>0.05), but showed differences in muscle strength post-intervention, with the exercise group showing greater strength (p<0.05). In the within-group comparison, there were differences in final heart rate and quadriceps and hamstring strength pre- and post-intervention in the exercise group (p<0.05). Conclusion: The results suggest that muscle strengthening of the lower limbs did not improve performance in the 6-minute walk test in this population of postmenopausal women. Trial registration ACTRN12609001053213.
Resumo:
A spectral performance model, designed to simulate the system spectral throughput for each of the 21 channels in the HIRDLS radiometer, is described. This model uses the measured spectral characteristics of each of the components in the optical train, appropriately corrected for their optical environment, to determine the end-to-end spectral throughput profile for each channel. This profile is then combined with the predicted thermal emission from the atmosphere, arising from the height of interest, to establish an in-band (wanted) to out-of-band (unwanted) radiance ratio. The results from the use of the model demonstrate that the instrument level radiometric requirements for the instrument will be achieved. The optical arrangement and spectral design requirements for filtering in the HIRDLS instrument are described together with a presentation of the performance achieved for the complete set of manufactured filters. Compliance of the predicted passband throughput model to the spectral positioning requi rements of the instrument is also demonstrated.
Resumo:
We propose a new general Bayesian latent class model for evaluation of the performance of multiple diagnostic tests in situations in which no gold standard test exists based on a computationally intensive approach. The modeling represents an interesting and suitable alternative to models with complex structures that involve the general case of several conditionally independent diagnostic tests, covariates, and strata with different disease prevalences. The technique of stratifying the population according to different disease prevalence rates does not add further marked complexity to the modeling, but it makes the model more flexible and interpretable. To illustrate the general model proposed, we evaluate the performance of six diagnostic screening tests for Chagas disease considering some epidemiological variables. Serology at the time of donation (negative, positive, inconclusive) was considered as a factor of stratification in the model. The general model with stratification of the population performed better in comparison with its concurrents without stratification. The group formed by the testing laboratory Biomanguinhos FIOCRUZ-kit (c-ELISA and rec-ELISA) is the best option in the confirmation process by presenting false-negative rate of 0.0002% from the serial scheme. We are 100% sure that the donor is healthy when these two tests have negative results and he is chagasic when they have positive results.
Resumo:
BACKGROUND: Patients with chemotherapy-related neutropenia and fever are usually hospitalized and treated on empirical intravenous broad-spectrum antibiotic regimens. Early diagnosis of sepsis in children with febrile neutropenia remains difficult due to non-specific clinical and laboratory signs of infection. We aimed to analyze whether IL-6 and IL-8 could define a group of patients at low risk of septicemia. METHODS: A prospective study was performed to assess the potential value of IL-6, IL-8 and C-reactive protein serum levels to predict severe bacterial infection or bacteremia in febrile neutropenic children with cancer during chemotherapy. Statistical test used: Friedman test, Wilcoxon-Test, Kruskal-Wallis H test, Mann-Whitney U-Test and Receiver Operating Characteristics. RESULTS: The analysis of cytokine levels measured at the onset of fever indicated that IL-6 and IL-8 are useful to define a possible group of patients with low risk of sepsis. In predicting bacteremia or severe bacterial infection, IL-6 was the best predictor with the optimum IL-6 cut-off level of 42 pg/ml showing a high sensitivity (90%) and specificity (85%). CONCLUSION: These findings may have clinical implications for risk-based antimicrobial treatment strategies.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física