744 resultados para Textile


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of a reactive dye, Reactive Blue 4, RB4, (C.I. 61205), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode and reticulated vitreous carbon electrode occurs in only one step at 2.0 < PH < 12 involving a two-electron transfer to the amine group leading to the imide derivative. Dye solution was not decolorized effectively in this electrolysis process. Nevertheless, the oxidation of this dye on Ti/SnO2/SbOx (3% mol)/RuO2 (1% mol) electrode showed 100% of decolorization and 60% of total organic carbon removal in Na2SO4 0.2 M at PH 2.2 and potential of +2.4 V. Experiments on degradation photoelectrocatalytic were also carried out for RB4 degradation in Na2SO4 0.1 K PH 12, using a Ti/TiO2 photoanode biased at +1.0 V and UV light. After 1 h of electrolysis the results indicated total color removal and 37% of mineralization. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of a reactive dye, Cibacron Blue F3GA, CB, (C.I. 61211), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode occurs in two steps at 2.0 < pH < 10 involving one electron transfer each to the amine group leading to the imide derivative. Stable films of poly-L-lysine (PLL) in the presence of glutaraldehyde (GA) 97.5%:2.5% on glassy carbon electrode can be used to detect low levels of dye using its oxidation peak at +0.75V by voltammetry. Linear calibration graphs were obtained for the CB reactive dye, from 1.0 X 10(-6) to 1.0 X 10(-5) mol L-1 in B-R buffer, pH 2.0, using a pre-concentration off-line during 10 min. The detection limit (3 sigma/slope) was calculated to be 4.5 X 10(-8) mol L-1. Films of PLL can readily be applied for the determination of CB dye bearing aminoanthraquinone as chromophore and chlorotriazinyl as reactive group at concentrations at least 100 times lesser than using a glassy carbon electrode without modification. The method described was applied for the determination of CB dye in tap water and raw water collected from the municipal treatment plant with a recovery of 89.2% +/- 5.4 and 88.0% +/- 6.5, respectively. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L-1) and a low current density (5 mA cm(-2)) it was possible to produce up to 60 mg L-1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm(-2) and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 x 10(-4) mol L-1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The textile industry consumes large quantities of water and chemicals, especially in dyeing and finishing processes. Textile dye adsorption can be accomplished with natural or synthetic compounds. Cell immobilization using biomaterials allows the reduction of toxicity and mechanical resistance and opens spaces within the matrix for cell growth. The use of natural materials, such as sugarcane bagasse, is promising due to the low costs involved. The aim of the present study was to evaluate the use of sugarcane bagasse treated with either polyethyleneimine (PEI), NaOH or distilled water in the cell immobilization of Saccharomyces cerevisiae for textile dye removal. Three different adsorption tests were conducted: treated sugarcane bagasse alone, free yeast cells and bagasse-immobilized yeast cells. Yeast immobilization was 31.34% with PEI-treated bagasse, 8.56% with distilled water and 22.54% with NaOH. PEI-treated bagasse exhibited the best removal rates of the dye at all pH values studied (2.50, 4.50 and 6.50). The best Acid Black 48 adsorption rates were obtained with use of free yeast cells. At pH 2.50, 1 mg of free yeast cells was able to remove 5488.49 g of the dye. The lowest adsorption capacity rates were obtained using treated bagasse alone. However, the use of bagasse-immobilized cells increased adsorption efficiency from 20 to 40%. The use of immobilized cells in textile dye removal is very attractive due to adsorbed dye precipitation, which eliminates the industrial need for centrifugation processes. Dye adsorption using only yeast cells or sugarcane bagasse requires separation methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial activity constitutes a good indicator of soil quality, and is influenced by the addition of carbon in the system serving as a substrate for microorganisms that increase their activity and release of CO2, comprising the edaphic respiration of the soil. The objective of this study was to evaluate the microbial activity in different soil types with the addition of cake press of castor bean and cotton textile residue. The study was conducted in a greenhouse at the headquarters of Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Cotton in randomized block design in 4 x 3 factorial arrangement with four replications. At predetermined intervals of 4 days, the containers were opened and the solution of NaOH titrated with HCl 2N in the presence of acid/base indicator phenolphthalein. After reading, the same amount of NaOH was added and the containers were closed again. The difference between the amounts of acid needed to neutralize the sodium hydroxide in a control container and the treatments was equivalent to the amount of carbon dioxide produced by soil microorganisms. It was found that the residues influenced the microbial activity in different soil types, especially in the initial determinations, presenting themselves as good sources for mineralization and nutrient supply, the castor bean proportionating higher cumulative release of CO2 by microorganisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the quantity of Mitomycin C discharged from different materials with the same size, potentially used in the application of this medicine accessible in the surgery center of an Universitarian Hospital. Material and Method: It was studied 20 fragments with 5 to 5mm, from each 5 materials: Lyostypt, Weck sponge, absorbable cloth which is used to clean, cotton plate and of cotton swab concerning the saturation capacity and the quantity of mitomicyn discharged. In the first stage, it was studied the saturation capacity from each material. In the second stage, it was applied 0,1 ml solution of Mitomicyn C (0,5 mg/ml) and it was measured the biggest discharge halo in the filter paper and the discharged quantity (the difference between the weight before and after the medicine discharge). Results: The absorveble capacity from each material varied from 0,144 ml (absorbable cloth) to 0,216 ml Weck sponge. The discharge of Mitomicyn C was varied too, the biggest was the cotton plate and absorbable cloth. The Weck sponge and the cotton (of cotton swab) discharges the same quantity. Conclusion: The different materials discharged different quantities of Mitomicyn C. This can explain the different results of the trabeculectomy with Mitomicyn C. The surveys must inform not only the material used to apply the mitomycin C but the volume used too. Because the same values of mitomycin C liberation, cotton may substitute Weck sponje in trabeculectomy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer is one of the most hazardous effects to human health caused by the exposition to chemical agents. The search for new technological solutions in the industrial field led to a rapid increase in the productive sector, causing the workers to be exposed to millions of potentially toxic agents, substances potentially harmful to health. This study presents the mutagenic activity of sweepings from a sock and lingerie factory in Araraquara-Brazil, assayed with Salmonella typhimurium. All the extracts from the factory had mutagenic on activity the YG1024 strain, which is extremely sensitive to detect the mutagenic activity of the arilhydroxilamines, nitroarenes and aromatic amines. The extracts were non-mutagenics for the strains TA100 and TA98. The analysis of the mutagenicity of industrial residues is highly important because employees that participate in the production are directly exposed to those agents, as well as to the environment where the garbage is deposited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The designs of filters made by granular material or textile are mainly based on empirical or semi empirical retention criteria according to Terzaghi proposal, which compares particle diameter of the soil base with the filter porous spaces. Silveira in 1965, proposed one rational design retention criteria based on the probability of a particle from the soil base, carried by one dimensional flow, be restrained by the porous of the filter while trying to pass through its thickness. This new innovating theory, besides of being very simple, it is not frequently used for granular filters since the necessary parameters for the design has to be determine for each natural material. However, for textile this problem no longer exists because it has quality control during manufacturing and the necessary characteristics properties of the product are specify in the product catalog. This work presents one adaptation of the Silveira theory for textile filters and the step-by-step procedure for the determination of the characteristics properties of the textile products necessary for the design. This new procedure permits the determination of the confiability level of retention that one specific particle diameter form the soil base has for one specified textile. One complete example is presented to demonstrate the simplicity of the method proposed and how the textile characteristics are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous potentially mutagenic chemicals have been studied mainly because they can cause damaging and inheritable changes in the genetic material. Several tests are commonly used for biomonitoring pollution levels and to evaluate the effects of toxic and mutagenic agents present in the natural environment. This study aimed at assessing the potential of a textile effluent contaminated with azo dyes to induce chromosomal and nuclear aberrations in Allium cepa test systems. A continuous exposure of seeds in samples of the textile effluent in different concentrations was carried out (0.3%, 3%, 10%, and 100%). Cells in interphase and undergoing division were examined to assess the presence of chromosome aberrations, nuclear changes, and micronuclei. Our results revealed a mutagenic effect of the effluent at concentrations of 10% and 100%. At lower concentrations, the effluent (3% and 0.3%) did not induce mutagenic alterations in the test organism A. cepa. These findings are of concern, since cell damage may be transmitted to subsequent generations, possibly affecting the organism as a whole, as well as the local biota exposed to the effluent discharge. If the damage results in cell death, the development of the organism may be affected, which could also lead to its death. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work discusses a proposition for organizing the lexical items from the conceptual domain labeled THE EMBROIDERY INDUSTRY OF IBITINGA in terms of a natural ontology. It also aims to establish the alignment between this ontology and the bases WordNet.Pr and WordNet.Br. © 2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil and subsoil pollution is not only significant in terms of environmental loss, but also a matter of environmental and public health. Solid, liquid and gaseous residues are the major soil contamination agents. They originate from urban conglomerates and industrial areas in which it is impossible to emphasize the chemical, petrochemical and textile industry; thermoelectric, mining, and ironmaster activities. The contamination process can thus be defined as a compound addition to soil, from what qualitative and or quantitative manners can modify soil's natural characteristics and use, producing baneful and deteriorative effects on human health. Studies have shown that human exposition to high concentration of some heavy metals found on soil can cause serious health problems, such as pulmonary or kidney complications, liver and nervous system harm, allergy, and the chronic exposition that leads to death. The present study searches for the correlation among soil contamination, done through a geochemical baseline survey of an industrial contamination area on the shoreline of Sao Paulo state. The study will be conducted by spatial analysis using Geographical Information Systems for mapping and regression analysis. The used data are 123 soil samples of percentage concentration of heavy metals. They were sampled and spatially distributed by geostatistics methods. To verify if there is a relation between heavy metals soil pollution and morbidity an executed correlation and regression analysis will be done using the pollution registers as the independent variables and morbidity as dependable variables. It is expected, by the end of the study, to identify the areas relation between heavy metals soil pollution and morbidity, moreover to be able to provide assistance in terms of new methodologies that could facilitate soil pollution control programs and public health planning. © 2010 WIT Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV-vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents. © 2012 Springer Science+Business Media Dordrecht.