866 resultados para Tetrazolium salt
Resumo:
"June 1999."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
"WRI 84-4056"--P. [4] of cover.
Resumo:
Includes index.
Resumo:
Cover title.
Resumo:
Includes indexes.
Resumo:
Maria McCann paints a dark picture of masculinity and its effects in her novel As Meat Loves Salt (2001). The violent Jacob Cullen struggles with his masculinity as he faces the intricacies of religion, sexuality and politics in the midst of the English Civil War where he falls in love with fellow soldier Christopher Ferris. By using R.W. Connell and James Messerschmidt’s framework for the hierarchy of masculinities, I explore masculinities on local, regional and global levels and emphasized femininity in a close reading of McCann’s novel. My aim is not only to analyse the masculinities of the novel but also to use the framework to redefine toxic masculinity in order to make it a useable concept when analysing masculinities in literature. I redefine toxic masculinity because it lacks a clear definition anchored in an established framework used to study masculinity that does not see masculinity as inherently toxic. I believe that anchoring it to Connell and Messerschmidt’s framework will make it a useable concept. Due to the novel’s relationship to the Bible, I will use masculinity studies done on David and Jesus from the Bible to compare and reveal similarities with the masculinities in the novel, how they appear on the local, regional and global levels in the novel and its effects. I draw parallels between the love story in As Meat Loves Salt to the love story of David and Jonathan in the Bible by using queer readings of David and Jonathan in order to explore how masculinity affects the relationships and how the novel uses these two love stories as a study of toxic masculinity and how it relates it to hegemonic masculinity.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Field observations on an unconfined coastal aquifer showed that a groundwater pulse, generated by it moderate (significant wave height, H-sig similar to 4.5 m) wave/storm event, induced significant oscillations in the salt-freshwater interface of the order of several metres in the horizontal direction. A dynamic sharp-interface model is developed to quantify the mechanism of these interface oscillations. The model uses the 50% seawater salinity contour as the location of the equivalent sharp-interface. The model was calibrated against the observed groundwater table fluctuations. It predicted reasonably well the interface oscillations with a slight over-prediction of the oscillation magnitude and a steepening of the interface. The neglect of mixing in the salt-freshwater mixing zone by the sharp-interface model is suggested as a possible contributor to the discrepancies between the model predictions and observations. In contrast with the significant wave effects, there was no observable response of the interface to diurnal or semidiurnal tides. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Nitric oxide (NO) is essential for normal function of the cardiovascular system. This study has determined whether chronic administration of L-arginine, the biological precursor of NO, attenuates the development of structural and functional changes in hearts and blood vessels of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Uninephrectomized rats treated with DOCA (25 mg every 4th day sc) and 1% NaCl in the drinking water for 4 wk were treated with L-arginine (5% in food, 3.4 +/- 0.3 g.kg body wt(-1).day(-1)). Changes in cardiovascular structure and function were determined by echocardiography, microelectrode studies, histology, and studies in isolated hearts and thoracic aortic rings. DOCA-salt hypertensive rats developed hypertension, left ventricular hypertrophy with increased left ventricular wall thickness and decreased ventricular internal diameter, increased inflammatory cell infiltration, increased ventricular interstitial and perivascular collagen deposition, increased passive diastolic stiffness, prolonged action potential duration, increased oxidative stress, and inability to increase purine efflux in response to an increased workload. L-Arginine markedly attenuated or prevented these changes and also normalized the reduced efficacy of norepinephrine and acetylcholine in isolated thoracic aortic rings of DOCA-salt hypertensive rats. This study suggests that a functional NO deficit in blood vessels and heart due to decreased NO synthase activity or increased release of reactive oxygen species such as superoxide may be a key change initiating many aspects of the cardiovascular impairment observed in DOCA-salt hypertensive rats. These changes can be prevented or attenuated by administration of L-arginine.
Resumo:
This study introduces the use of combined Na-23 magnetic resonance imaging (MRI) and Na-23 NMR relaxometry for the study of meat curing. The diffusion of sodium ions into the meat was measured using Na-23 MRI on a 1 kg meat sample brined in 10% w/w NaCl for 3-100 h. Calculations revealed a diffusion coefficient of 1 x 10(-5) cm(2)/s after 3 h of curing and subsequently decreasing to 8 x 10(-6) cm(2)/s at longer curing times, suggesting that changes occur in the microscopic structure of the meat during curing. The microscopic mobility and distribution of sodium was measured using Na-23 relaxometry. Two sodium populations were observed, and with increasing length of curing time the relaxation times of these changed, reflecting a salt-induced swelling and increase in myofibrillar pore sizes. Accordingly, the present study demonstrated that pore size and thereby salt-induced swelling in meat can be assessed using Na-23 relaxometry.
Resumo:
Many marine reptiles and birds possess extrarenal salt glands that facilitate the excretion of excess sodium and chloride ions accumulated as a consequence of living in saline environments. Control of the secretory activity of avian salt glands is under neural control, but little information is available on the control of reptilian salt glands. Innervation of the lingual salt glands of the salt water crocodile, Crocodylus porosus, was examined in salt water-acclimated animals using histological methods. Extensive networks of both cholinergic and adrenergic nerve fibres were identified close to salt-secreting lobules and vasculature. The identification of both catecholamine-containing and cholinergic neurons in the salt gland epithelium and close to major blood vessels in the tissue suggests the action of the neurotransmitters on the salt-secreting epithelium itself and the rich vascular network of the lingual salt glands.