953 resultados para Temperature-dependent Sex Determination
Resumo:
To examine the genetic controls of endosperm (ES) specificity, several cereal seed storage protein (SSP) promoters were isolated and studied using a transient expression analysis system. An oat globulin promoter (AsGlo1) capable of driving strong ES-specific expression in barley and wheat was identified. Progressive 5' deletions and cis element mutations demonstrated that the mechanism of specificity in the AsGlo1 promoter was distinct from that observed in glutelin and prolamin promoters. A novel interrupted palindromic sequence, ACATGTCAT-CATGT, was required for ES specificity and substantially contributed to expression strength of the AsGlo1 promoter. This sequence was termed the endosperm specificity palindrome (ESP) element. The GCN4 element, which has previously been shown to be required for ES specificity in cereal SSP promoters, had a quantitative role but was not required for tissue specificity. The 960-bp AsGlo1 promoter and a 251-bp deletion containing the ESP element also drove ES-specific expression in stably transformed barley. Reporter gene protein accumulated at very high levels (10% of total soluble protein) in ES tissues of plants transformed with an AsGlo1:GFP construct. Expression strength and tissue specificity were maintained over five transgenic generations. These attributes make the AsGlo1 promoter an ideal promoter for biotechnology applications. In conjunction with previous findings, our data demonstrate that there is more than one genetically distinct mechanism by which ES specificity can be achieved in cereal SSP promoters, and also suggest that there is redundancy between transcriptional and post-transcriptional tissue specificity mechanisms in cereal globulin genes.
Resumo:
In many instances, kidney dysgenesis results as a secondary consequence to defects in the development of the ureter. Through the use of mouse genetics a number of genes associated with such malformations have been identified, however, the cause of many other abnormalities remain unknown. In order to identify novel genes involved in ureter development we compared gene expression in embryonic day (E) 12.5, E15.5 and postnatal day (P) 75 ureters using the Compugen mouse long oligo microarrays. A total of 248 genes were dynamically upregulated and 208 downregulated between E12.5 and P75. At E12.5, when the mouse ureter is comprised of a simple cuboidal epithelium surrounded by ureteric mesenchyme, genes previously reported to be expressed in the ureteric mesenchyme, foxC1 and foxC2 were upregulated. By E15.5 the epithelial layer develops into urothelium, impermeable to urine, and smooth muscle develops for the peristaltic movement of urine towards the bladder. The development of these two cell types coincided with the upregulation of UPIIIa, RAB27b and PPAR gamma reported to be expressed in the urothelium, and several muscle genes, Acta1, Tnnt2, Myocd, and Tpm2. In situ hybridization identified several novel genes with spatial expression within the smooth muscle, Acta1; ureteric mesenchyme and smooth muscle, Thbs2 and Co15a2; and urothelium, Kcnj8 and Adh1. This study marks the first known report defining global gene expression of the developing mouse ureter and will provide insight into the molecular mechanisms underlying kidney and lower urinary tract malformations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Sex determination represents a critical bifurcation in the road of embryonic development. It is based on a finely regulated network of gene activity, as well as protein-protein interactions and activation or silencing of signaling pathways. Despite the identification of a number of critical genes, many aspects of the molecular cascade that drives the differentiation of the embryonic gonad into either a testis or an ovary remain poorly understood. To identify new proteins involved in this cascade, we employed two-dimensional gel electrophoresis and mass spectrometry to compare the protein expression profiles of fetal mouse testes and ovaries. Three proteins, hnRPA1, TRA1, and HSC71, were found to be expressed in a male-specific manner and this expression was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization. Moreover, HSC71 was found to be hyperphosphorylated in male compared to female gonads, emphasizing the advantage of the proteomic approach in allowing the detection of posttranslational modifications.
Resumo:
The molecular mechanisms behind the entry of the primordial follicle into the growing follicle pool remain poorly understood. To investigate this process further, a microarray-based comparison was undertaken between 2-day postpartum mouse ovaries consisting of primordial follicles/naked oocytes only and those with both primordial follicles and newly activated follicles (7-day postpartum). Gene candidates identified included the chemoattractive cytokine stromal derived factor-1 (SDF1) and its receptor CXCR4. SDF1 and CXCR4 have been implicated in a variety of physiological processes including the migration of embryonic germ cells to the gonads. SDF1-alpha expression increased with the developmental stage of the follicle. Embryonic expression was found to be dichotomous post-genii cell migration, with low expression in the female. Immunohistochemical studies nonetheless indicate that the autocrine pattern of expression ligand and receptor begins during embryonic life. Addition of recombinant SDF1-alpha to neonatal mouse ovaries in vitro resulted in significantly higher follicle densities than for control ovaries. TUNEL analysis indicated no detectable difference in populations of apoptotic cells of treated or control ovaries. Treated ovaries also contained a significantly lower percentage of activated follicles as determined by measurement of oocyte diameter and morphological analysis. Treatment of cultured ovaries with an inhibitor of SDF1-alpha, AMD3100, ablated the effect of SDF1-alpha. By retaining follicles in an unactivated state, SDF1/CXCR4 signaling may play an important role in maintaining the size and longevity of the primordial follicle pool. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The term secretome has been defined as a set of secreted proteins (Grimmond et al. [2003] Genome Res 13:1350-1359). The term secreted protein encompasses all proteins exported from the cell including growth factors, extracellular proteinases, morphogens, and extracellular matrix molecules. Defining the genes encoding secreted proteins that change in expression during organogenesis, the dynamic secretome, is likely to point to key drivers of morphogenesis. Such secreted proteins are involved in the reciprocal interactions between the ureteric bud (UB) and the metanephric mesenchyme (AM) that occur during organogenesis of the metanephros. Some key metanephric secreted proteins have been identified, but many remain to be determined. In this study, microarray expression profiling of E10.5, E11.5, and E13.5 kidney and consensus bioinformatic analysis were used to define a dynamic secretome of early metanephric development. In situ hybridisation was used to confirm microarray results and clarify spatial expression patterns for these genes. Forty-one secreted factors were dynamically expressed between the E10.5 and E13.5 timeframe profiled, and 25 of these factors had not previously been implicated in kidney development. A text-based anatomical ontology was used to spatially annotate the expression pattern of these genes in cultured metanephric explants.
Resumo:
Background. The growth of solid tumors depends on establishing blood supply; thus, inhibiting tumor angiogenesis has been a long-term goal in cancer therapy. The SOX18 transcription factor is a key regulator of murine and human blood vessel formation. Methods: We established allograft melanoma tumors in wild-type mice, Sox18-null mice, and mice expressing a dominant-negative form of Sox18 (Sox18RaOp) (n = 4 per group) and measured tumor growth and microvessel density by immunohistochemical analysis with antibodies to the endothelial marker CD31 and the pericyte marker NG2. We also assessed the affects of disrupted SOX18 function on MCF-7 human breast cancer and human umbilical vein endothelial cell (HUVEC) proliferation by measuring BrdU incorporation and by MTS assay, cell migration using Boyden chamber assay, and capillary tube formation in vitro. All statistical tests were two-sided. Results: Allograft tumors in Sox18-null and Sox18RaOp mice grew more slowly than those in wild-type mice (tumor volume at day 14, Sox18 null, mean = 486 mm(3), 95% confidence interval [CI] = 345 mm(3) to 627 mm(3), p = .004; Sox18RaOp, mean = 233 mm(3), 95% CI = 73 mm(3) to 119 mm(3), p < .001; versus wild-type, mean = 817 mm(3), 95% CI = 643 mm(3) to 1001 mm(3)) and had fewer CD31- and NG2-expressing vessels. Expression of dominant-negative Sox18 reduced the proliferation of MCF-7 cells (BrdU incorporation: MCF-7(Ra) = 20%, 95% CI = 15% to 25% versus MCF-7 = 41%, 95% CI = 35% to 45%; P = .013) and HUVECs (optical density at 490 nm, empty vector, mean = 0.46 versus SOX18 mean = 0.29; difference = 0.17, 95% CI = 0.14 to 0.19; P = .001) compared with control subjects. Overexpression of wild-type SOX18 promoted capillary tube formation of HUVECs in vitro, whereas expression of dominant-negative SOX18 impaired tube formation of HUVECs and the migration of MCF-7 cells via the disruption of the actin cytoskeleton. Conclusions: SOX18 is a potential target for antiangiogenic therapy of human cancers.
Resumo:
The Crim1 gene encodes a transmembrane protein containing six cysteine-rich repeats similar to those found in the BMP antagonist, chordin (chd). To investigate its physiological role, zebrafish crim1 was cloned and shown to be both maternally and zygotically expressed during zebrafish development in sites including the vasculature, intermediate cell mass. notochord, and otic vesicle. Bent or hooked tails with U-shaped somites were observed in 85% of morphants from 12 hpf. This was accompanied by a loss of muscle pioneer cells. While morpholino knockdown of crim1 showed some evidence of ventralisation, including expansion of the intermediate cell mass (ICM), reduction in head size bent tails and disruption to the somites and notochord, this did not mimic the classically ventralised phenotype, as assessed by the pattern of expression of the dorsal markers chordin, otx2 and the ventral markers eve1, pax2.1, tall and gata1 between 75% epiboly and six-somites. From 24 hpf, morphants displayed an expansion of the ventral mesoderm-derived ICM, as evidenced by expansion of tall. Imo2 and crim1 itself. Analysis of the crim1 morphant phenotype in Tg(fli:EGFP) fish showed a clear reduction in the endothelial cells forming the intersegmental vessels and a loss of the dorsal longitudinal anastomotic vessel (DLAV). Hence, the primary role of zebrafish crim1 is likely to be the regulation of somitic and vascular development. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Nodulation in legumes provides a major conduit of available nitrogen into the biosphere. The development of nitrogen-fixing nodules results from a symbiotic interaction between soil bacteria, commonly called rhizobia, and legume plants. Molecular genetic analysis in both model and agriculturally important legume species has resulted in the identification of a variety of genes that are essential for the establishment, maintenance and regulation of this symbiosis. Autoregulation of nodulation (AON) is a major internal process by which nodule numbers are controlled through prior nodulation events. Characterisation of AON-deficient mutants has revealed a novel systemic signal transduction pathway controlled by a receptor-like kinase. This review reports our present level of understanding on the short- and long-distance signalling networks controlling early nodulation events and AON.
Resumo:
Germ cells in the mouse embryo can develop as oocytes or spermatogonia, depending on molecular cues that have not been identified. We found that retinoic acid, produced by mesonephroi of both sexes, causes germ cells in the ovary to enter meiosis and inititate oogenesis. Meiosis is retarded in the fetal testis by the action of the retinoid-degrading enzyme CYP26B1, ultimately leading to spermatogenesis. In testes of Cyp26b1-knockout mouse embryos, germ cells enter meiosis precociously, as if in a normal ovary. Thus, precise regulation of retinoid levels during fetal gonad development provides the molecular control mechanism that specifies germ cell fate.
Resumo:
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
As the mammalian embryo develops, it must engage one of the two distinct programmes of gene activity, morphogenesis and organogenesis that characterize males and females. In males, sexual development hinges on testis determination and differentiation, but also involves many coordinated transcriptional, signalling and endocrine networks that underpin the masculinization of other organs and tissues, including the brain. Here we bring together current knowledge about these networks, identify gaps in the overall picture, and highlight the known defects that lead to disorders of male sexual development.
Resumo:
A fast, reproducible, and efficient transformation procedure employing Agrobacterium rhizogenes was developed for Phaseolus vulgaris L. wild accessions, landraces, and cultivars and for three other species belonging to the genus Phaseolus: R coccineus, P lunatus, and P acutifolius. Induced hairy roots are robust and grow quickly. The transformation frequency is between 75 and 90% based on the 35-S promoter-driven green fluorescent protein and beta-glucuronidase expression reporter constructs. When inoculated with Rhizobium tropici, transgenic roots induce normal determinate nodules that fix nitrogen as efficiently as inoculated standard roots. The A. rhizogenes-induced hairy root transformation in the genus Phaseolus sets the foundation for functional genomics programs focused on root physiology, root metabolism, and root-microbe interactions.
Resumo:
Despite our detailed characterization of the human genome at the level of the primary DNA sequence, we are still far from understanding the molecular events underlying phenotypic variation. Epigenetic modifications to the DNA sequence and associated chromatin are known to regulate gene expression and, as such, are a significant contributor to phenotype. Studies of inbred mice and monozygotic twins show that variation in the epigenotype can be seen even between genetically identical individuals and that this, in some cases at least, is associated with phenotypic differences. Moreover, recent evidence suggests that the epigenome can be influenced by the environment and these changes can last a lifetime. However, we also know that epigenetic states in real-time are in continual flux and, as a result, the epigenome exhibits instability both within and across generations. We still do not understand the rules governing the establishment and maintenance of the epigenotype at any particular locus. The underlying DNA sequence itself and the sequence at unlinked loci (modifier loci) are certainly involved. Recent support for the existence of transgenerational epigenetic inheritance in mammals suggests that the epigenetic state of the locus in the previous generation may also play a role. Over the next decade, many of these processes will be better understood, heralding a greater capacity for us to correlate measurable molecular marks with phenotype and providing the opportunity for improved diagnosis and presymptomatic healthcare.