990 resultados para Teeth
Resumo:
Objective: The aim of this study was to evaluate the morphology and permeability of root canal walls irradiated with Er,Cr:YSGG laser after conventional endodontic treatment. Background: Laser irradiation can be used for dentinal tubule exposure, smear layer removal, and disinfection. Another potential, interesting application is as an adjunct to endodontic treatment, especially in the intracanal medication phase. Methods: Fifty-two single-rooted teeth had their crowns sectioned at the cementoenamel junction and were randomly divided into four groups (n = 13): G1: conventional preparation (CP) + irrigation with EDTA-T+rhodamine B dye solution associated with NDP (dexamethasone phosphate, paramonochlorophenol, polyethylenoglycol) (Rhod-NDP); G2: CP+EDTA-T + Er,Cr:YSGG laser irradiation 0.75W+Rhod-NDP; G3: CP + EDTA-T + Er,Cr:YSGG 1.5W+Rhod-NDP; G4: CP + EDTA-T + Er,Cr:YSGG 2.5W + Rhod-NDP. For the permeability analysis (n = 9), teeth were transversely cut and two slices of each third were selected. The images were analyzed by ImageLab software (Softium Informatica Ltda., Sao Paulo, SP, Brazil). Additional samples (n = 4) were examined by scanning electron microscopy. Results: Data were analyzed statistically using the Kruskal-Wallis and Student-Newman-Keuls tests for the following areas: apical third (H = 23.4651): G1 (14.25)(a), G2 (17.66)(ab), G3 (26.50)(b), G4 (39.58)(c); medium (H = 23.1611): G1 (14.16)(a), G2 (16.66)(ab), G3 (28.83)(b), G4 (38.33)(b); and cervical (H = 32.4810): G1 (9.66)(a), G2 (20.00)(ab), G3 (27.00)(b), G4 (41.33)(c), (p<0.01). Despite the irregular aspect of laser irradiation along the canal walls, the parameters of 1.5W and 2.5W allowed morphologic modifications that increased dentinal permeability. Conclusions: Irradiation with Er, Cr: YSGG laser could be effective in endodontic treatment for increasing dentinal permeability.
Resumo:
Objective: To evaluate the influence of 810-nm-diode laser irradiation, applied before root canal filling, on apical sealing ability of three different resin-based sealers (AH Plus, EndoRez, and RealSeal). Background: Lasers have been widely used in endodontics. The dentin wall changes caused by laser irradiation could improve the sealing ability of endodontic cements. Methods: Sixty single-rooted human teeth were divided into six groups, according to the endodontic sealer used and previous 810-nm-diode laser irradiation. The protocol for laser irradiation was 2.5W in a continuous wave, in scanning mode, with four irradiations per tooth. After sample preparation, they were analyzed according to apical leakage with silver nitrate impregnation. Results: The RealSeal sealer achieved minimum leakage rates (1.24 mm), with significant differences at the 1% level (Tukey's test, p < 0.01) from AH Plus (1.84 mm) in nonirradiated groups. When the laser was used, there were also significant differences at the 5% level (p < 0.05) between irradiated groups (1.31 and 1.78 mm, respectively). Conclusion: The 810-nm-diode laser irradiation did not promote significant differences in apical leakage.
Resumo:
The purpose of this study was to assess the benefits of using e-learning resources in a dental training course on Atraumatic Restorative Treatment (ART). This e-course was given in a DVD format, which presented the ART technique and philosophy. The participants were twenty-four dentists from the Brazilian public health system. Prior to receiving the DVD, the dentists answered a questionnaire regarding their personal data, previous knowledge about ART, and general interest in training courses. The dentists also participated in an assessment process consisting of a test applied before and after the course. A single researcher corrected the tests, and intraexaminer reproducibility was calculated (kappa=0.89). Paired t-tests were carried out to compare the means between the assessments, showing a significant improvement in the performance of the subjects on the test taken after the course (p<0.05). A linear regression model was used with the difference between the means as the outcome. A greater improvement on the test results was observed among female dentists (p=0.034), dentists working for a shorter period of time in the public health system (p=0.042), and dentists who used the ART technique only for urgent and/or temporary treatment (p=0.010). In conclusion, e-learning has the potential of improving the knowledge that dentists working in the public health system have about ART, especially those with less clinical experience and less knowledge about the subject.
Resumo:
Objective: To evaluate the prevalence of dental anomalies in patients with agenesis of second premolars and compare the findings with the prevalence of these anomalies in the general population. Materials and Methods: A Brazilian sample of 203 patients aged 8 to 22 years was selected. All patients presented agenesis of at least one second premolar. Panoramic and periapical radiographs and dental casts were used to analyze the presence of other associated dental anomalies, including agenesis of other permanent teeth, ectopia of unerupted permanent teeth, infraocclusion of deciduous molars, microdontia of maxillary lateral incisors, and supernumerary teeth. The occurrence of these anomalies was compared with occurrence data previously reported for the general population. Statistical testing was performed using the chi-square test (P < .05) and the odds ratio. Results: The sample with agenesis of at least one second premolar presented a significantly increased prevalence rate of permanent tooth agenesis (21%), excluding third molars. Among the sample segment aged 14 years or greater (N = 77), occurrence of third-molar agenesis (48%) exceeded twice its normal frequency. Significant increases in occurrence of microdontia of maxillary lateral incisors (20.6%), infraocclusion of deciduous molars (24.6%), and distoangulation of mandibular second premolars (7.8%) were observed. Palatally displaced canine anomaly was also significantly elevated (8.1%). Conclusion: The results provide evidence that agenesis of other permanent teeth, microdontia, deciduous molar infraocclusion, and certain dental ectopias are the products of the same genetic mechanisms that cause second-premolar agenesis. (Angle Orthod. 2009;79:436-441.)
Resumo:
Objective: The aim of this study was to investigate the effects of photodynamic therapy (PDT) on endodontic pathogens by evaluating the decrease in numbers of Enterococcus faecalis colonies in the canals of extracted human teeth. Background Data: Failure in endodontics is usually related to inadequate cleaning and disinfection of the root canal system. This is due to the establishment of microorganisms in areas where the instruments and chemical agents used during root canal preparation cannot eliminate them. PDT is a complementary therapeutic method that could be used to eliminate these remaining bacteria. PDT is a process in which radiation acts on a dye that is applied to the target organism, resulting in bacterial death. Materials and Methods: Forty-six uniradicular teeth had their canals contaminated with bacteria and were incubated for 48 h at 35 degrees C. After that, the teeth were divided into a control group (CG) and a test group (TG). The 23 CG teeth did not undergo any intervention, whereas in the TG the teeth received a solution of 0.0125% toluidine blue for 5 min followed by irradiation using a 50-mW diode laser (Ga-Al-As) at a wavelength of 660 nm. Bacterial samples were taken before and after irradiation. In each of the samples, the number of colony-forming units (CFU) was counted. Results: The mean decrease in CFU was 99.9% in the TG, whereas in the CG an increase of 2.6% was observed. Conclusion: PDT was effective as a bactericidal agent in Enterococcus faecalis-contaminated root canals.
Resumo:
Objective: In this study we evaluated the ablation rate of superficial and deep dentin irradiated with different Er:YAG laser energy levels, and observed the micromorphological aspects of the lased substrates with a scanning electron microscope (SEM). Background Data: Little is known about the effect of Er: YAG laser irradiation on different dentin depths. Materials and Methods: Sixty molar crowns were bisected, providing 120 specimens, which were randomly assigned into two groups ( superficial or deep dentin), and later into five subgroups (160, 200, 260, 300, or 360 mJ). Initial masses of the specimens were obtained. After laser irradiation, the final masses were obtained and mass losses were calculated followed by the preparation of specimens for SEM examination. Mass-loss values were subjected to two-way ANOVA and Fisher's least significant difference multiple-comparison tests (p < 0.05). Results: There was no difference between superficial and deep dentin. A significant and gradual increase in the mass-loss values was reached when energies were raised, regardless of the dentin depth. The energy level of 360 mJ showed the highest values and was statistically significantly different from the other energy levels. The SEM images showed that deep dentin was more selectively ablated, especially intertubular dentin, promoting tubule protrusion. At 360 mJ the micromorphological features were similar for both dentin depths. Conclusion: The ablation rate did not depend on the depth of the dentin, and an energy level lower than 360 mJ is recommended to ablate both superficial and deep dentin effectively without causing tissue damage.
Resumo:
Objective: The purpose of this study was to assess the efficacy of Er:YAG laser energy for composite resin removal and the influence of pulse repetition rate on the thermal alterations occurring during laser ablation. Materials and Methods: Composite resin filling was placed in cavities (1.0 mm deep) prepared in bovine teeth and the specimens were randomly assigned to five groups according to the technique used for composite filling removal. In group I (controls), the restorations were removed using a high-speed diamond bur. In the other groups, the composite fillings were removed using an Er: YAG laser with different pulse repetition rates: group 2-2 Hz; group 3-4 Hz; group 4-6 Hz; and group 5-10 Hz. The time required for complete removal of the restorative material and the temperature changes were recorded. Results: Temperature rise during composite resin removal with the Er: YAG laser occurred in the substrate underneath the restoration and was directly proportional to the increase in pulse repetition rate. None of the groups had a temperature increase during composite filling removal of more than 5.6 degrees C, which is considered the critical point above which irreversible thermal damage to the pulp may result. Regarding the time for composite filling removal, all the laser-ablated groups (except for group 5 [10 Hz]) required more time than the control group for complete elimination of the material from the cavity walls. Conclusion: Under the tested conditions, Er: YAG laser irradiation was efficient for composite resin ablation and did not cause a temperature increase above the limit considered safe for the pulp. Among the tested pulse repetition rates, 6 Hz produced minimal temperature change compared to the control group (high-speed bur), and allowed composite filling removal within a time period that is acceptable for clinical conditions.
Resumo:
Objective: The purpose of this in vitro study was to investigate using the scanning electron microscope (SEM) the ultrastructural morphological changes of the radicular dentine surface after irradiation with 980-nm diode laser energy at different parameters and angles of incidence. Background Data: There have been limited reports on the effects of diode laser irradiation at 980 nm on radicular dentin morphology. Materials and Methods: Seventy-two maxillary canines were sectioned and roots were biomechanically prepared using K3 rotary instruments. The teeth were irrigated with 2 mL of distilled water between files and final irrigation was performed with 10 mL of distilled water. The teeth were then randomly divided into five groups (n = 8 each) according to their diode laser parameters: Group 1: no irradiation (control); group 2: 1.5 W/continuous wave (CW) emission (the manufacturer's parameters); group 3: 1.5 W/100 Hz; group 4: 3 W/CW; and group 5: 3 W/100 Hz. Laser energy was applied with helicoid movements (parallel to the canal walls) for 20 sec. Eight additional teeth for each group were endodontically prepared and split longitudinally and irradiation was applied perpendicularly to the root surface. Results: Statistical analysis showed no difference between the root canal thirds irradiated with the 980-nm diode laser, and similar results between the parameters 1.5 W/CW and 3 W/100 Hz (p > 0.05). Conclusion: When considering different output powers and delivery modes our results showed that changes varied from smear layer removal to dentine fusion.
Resumo:
Objectives: To describe the microscopic pulpal reactions resulting from orthodontically induced tooth movement associated with low-level laser therapy (LLLT) in rats. Materials and Methods: Forty-five young male Wistar rats were randomly assigned to three groups. In group I (n = 20), the maxillary right first molars were submitted to orthodontic movement with placement of a coil spring. In group II (n = 20), the teeth were submitted to orthodontic movement plus LLLT at 4 seconds per point (buccal, palatal, and mesial) with a GaAlAs diode laser source (830 nm, 100 mW, 18 J/cm(2)). Group III (n = 5) served as a control (no orthodontic movement or LLLT). Groups I and 11 were divided into four subgroups according to the time elapsed between the start of tooth movement and sacrifice (12 hours, 24 hours, 3 days, and 7 days). Results: Up until the 3-day period, the specimens in group I presented a thicker odontoblastic layer, no cell-free zone of Weil, pulp core with differentiated mesenchymal and defense cells, and a high concentration of blood vessels. In group II, at the 12- and 24-hour time points, the odontoblastic layer was disorganized and the cell-free zone of Weil was absent, presenting undifferentiated cells, intensive vascularization with congested capillaries, and scarce defense cells in the cell-rich zone. In groups I and II, pulpal responses to the stimuli were more intense in the area underneath the region of application of the force or force/laser. Conclusions: The orthodontic-induced tooth movement and LLLT association showed reversible hyperemia as a tissue response to the stimulus. LLLT leads to a faster repair of the pulpal tissue due to orthodontic movement. (Angle Orthod. 2010;80:116-122.)
Resumo:
Objective: The purpose of this study was to evaluate the ablation capacity of different energies and pulse repetition rates of Er:YAG laser energy on primary molar enamel, by assessing mass loss and by analyzing the surface morphology with scanning electron microscopy. Background Data: Previous studies have demonstrated the capacity of the Er:YAG laser to ablate enamel substrate. Methods: Forty-two sound primary molars were bisected in a mesiodistal direction. The enamel surfaces were flattened and their initial mass (in milligrams) was obtained. An area of 4 mm(2) was delimited. The specimens were randomly assigned to 12 groups according to the combination of energy (160, 200, 250, and 300 mJ) and pulse repetition rate (2, 3, and 4 Hz). Er: YAG laser irradiation was performed on each specimen for 20 sec. After irradiation, the final mass was obtained and specimens were prepared for examination with scanning electron microscopy. The data obtained by subtracting the final mass from the initial mass were statistically analyzed using ANOVA and the Tukey test (p < 0.05). Results: The pulse repetition rate of 4 Hz provided greater mass loss, different from that seen with 2 Hz, and similar to that seen with 3 Hz. The energy level of 300 mJ resulted in greater mass loss, similar to that seen with 200 and 250 mJ. Scanning electron photomicrographs showed that there was non-selective enamel removal, with fused and cracked areas in all specimens. Conclusion: The parameters of 200 mJ and 2 Hz produced a good ablation rate with fewer surface alterations in primary molar enamel.
Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser
Resumo:
In the present study, a finite element model of a half-sectioned molar tooth was developed in order to understand the thermal behavior of dental hard tissues (both enamel and dentin) under laser irradiation. The model was validated by comparing it with an in vitro experiment where a sound molar tooth was irradiated by an Er,Cr:YSGG pulsed laser. The numerical tooth model was conceived to simulate the in vitro experiment, reproducing the dimensions and physical conditions of the typical molar sound tooth, considering laser energy absorption and calculating the heat transfer through the dental tissues in three dimensions. The numerical assay considered the same three laser energy densities at the same wavelength (2.79 mu m) used in the experiment. A thermographic camera was used to perform the in vitro experiment, in which an Er, Cr: YSGG laser (2.79 mu m) was used to irradiate tooth samples and the infrared images obtained were stored and analyzed. The temperature increments in both the finite element model and the in vitro experiment were compared. The distribution of temperature inside the tooth versus time plotted for two critical points showed a relatively good agreement between the results of the experiment and model. The three dimensional model allows one to understand how the heat propagates through the dentin and enamel and to relate the amount of energy applied, width of the laser pulses, and temperature inside the tooth. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2953526]
Resumo:
Dental implant materials are required to enable good apposition of bone and soft tissues. They must show sufficient resistance to chemical, physical and biological stress in the oral cavity to achieve good long-term outcomes. A critical issue is the apposition of the soft tissues, as they have provided a quasi-physiological closure of oral cavity. The present experiment was performed to study the peri-implant tissue response to non-submerged (1-stage) implant installation procedures. Two different implants types (NobelBiocare, NobelReplace (R) Tapered Groovy 4.3 x 10 mm and Replace (R) Select Tapered TiU RP 4.3 x 10 mm) were inserted into the right and left sides of 8 domestic pigs (Sus scrofa domestica) mandibles, between canines and premolars and immediately provided with a ceramic crown. Primary implant stability was determined using ressonance frequency analysis. Soft tissue parameters were assessed: sulcus depth (SDI) and junctional epithelium (JE). Following 70 days of healing, jaw sections were processed for histology and histomorphometric examination. Undecalcified histological sections demonstrated osseointegration with direct bone contact. The soft tissue parameters revealed no significant differences between the two implant types. The peri-implant soft tissues appear to behave similarly in both implant types.
Resumo:
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin. Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er, Cr: YSGG laser can be used for caries prevention when settings are below the ablation threshold. Materials and Methods: Four specimens of bovine dentin were irradiated using an Er, Cr:YSGG laser (lambda = 2.78 mu m), at a repetition rate of 20 Hz, with a 750-mu m-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples. Results: Dentin Ra for different areas were as follows: central, 261.26 (+/- 21.65) nm; intermediate, 83.48 (+/- 6.34) nm; peripheral, 45.8 (+/- 13.47) nm; and nonirradiated, 35.18 (+/- 2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin. Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er, Cr: YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Resumo:
Background: The presence of the periodontal ligament (PDL) makes it possible to absorb and distribute loads produced during masticatory function and other tooth contacts into the alveolar process via the alveolar bone proper. However, several factors affect the integrity of periodontal structures causing the destruction of the connective matrix and cells, the loss of fibrous attachment, and the resorption of alveolar bone. Methods: The purpose of this study was to evaluate the stress distribution by finite element analysis in a PDL in three-dimensional models of the upper central incisor under three different load conditions: 100 N occlusal loading at 45 degrees (model 1: masticatory load); 500 N at the incisal edge at 45 degrees (model 2: parafunctional habit); and 800 N at the buccal surface at 90 degrees (model 3: trauma case). The models were built from computed tomography scans. Results: The stress distribution was quite different among the models. The most significant values (harmful) of tensile and compressive stresses were observed in models 2 and 3, with similarly distinct patterns of stress distributions along the PDL. Tensile stresses were observed along the internal and external aspects of the PDL, mostly at the cervical and middle thirds. Conclusions: The stress generation in these models may affect the integrity of periodontal structures. A better understanding of the biomechanical behavior of the PDL under physiologic and traumatic loading conditions might enhance the understanding of the biologic reaction of the PDL in health and disease. J Periodontol 2009;80:1859-1867.
Resumo:
Our aim was to document the benefits of three dimensional finite element model generations from computed tomography data as well as the realistic creation of all oral structures in a patient. The stresses resulting from the applied load in our study did not exceed the structure limitations, suggesting a clinically acceptable physiological condition.