932 resultados para Tamar estuary
Resumo:
Runoff from an extreme storm on 22 March 2010 led, during the next 3 months, to the formation of a pronounced halocline and underlying hypoxia in the upper reaches of the microtidal Swan–Canning Estuary. Benthic macroinvertebrates were sampled between January 2010 and October 2011 at five sites along 10 km of this region. By mid-April, the number of species, total density, Simpson’s evenness index and taxonomic distinctness had declined markedly, crustaceans had disappeared and the densities of annelids and molluscs had declined slightly. These faunal attributes (except Simpson’s index) and species composition did not recover until after the end of the hypoxia. The survival of annelids and loss of crustaceans in this period reflects different sensitivities of these taxa to severe environmental stress. The results emphasise that microtidal estuaries with long residence times are highly vulnerable to the effects of environmental perturbations, particularly during warmer periods of the year.
Resumo:
Runoff from an extreme storm on 22 March 2010 led, during the next 3 months, to the formation of a pronounced halocline and underlying hypoxia in the upper reaches of the microtidal Swan–Canning Estuary. Benthic macroinvertebrates were sampled between January 2010 and October 2011 at five sites along 10 km of this region. By mid-April, the number of species, total density, Simpson’s evenness index and taxonomic distinctness had declined markedly, crustaceans had disappeared and the densities of annelids and molluscs had declined slightly. These faunal attributes (except Simpson’s index) and species composition did not recover until after the end of the hypoxia. The survival of annelids and loss of crustaceans in this period reflects different sensitivities of these taxa to severe environmental stress. The results emphasise that microtidal estuaries with long residence times are highly vulnerable to the effects of environmental perturbations, particularly during warmer periods of the year.
Resumo:
Management of riverine and coastal ecosystems warrants enhanced understanding of how different stakeholders perceive and depend upon different kinds of ecosystem services. Employing a mixed methods approach, this study compares and contrasts the use and perceptions of upstream residents, downstream residents, tourism officials, and conservation organizations regarding the value of 30 ecosystem services provided by the Wami River and its estuary in Tanzania, and investigates their perceptions of the main threats to this system. Our findings reveal that all of the stakeholder groups place a high value on the provision of domestic water, habitat for wild plants and animals, tourism, and erosion control, and a relatively low value on the prevention of saltwater intrusion, refuge from predators, spiritual fulfillment, nonrecreational hunting, and the provision of traditional medications and inorganic materials for construction. Differences emerge, however, between the groups in the value assigned to the conservation of riverine and estuarine fauna and the provision of raw materials for building and handicrafts. Declining fish populations and an increasing human population are identified by the residents and conservation employees, respectively, as their prime concerns regarding the future conditions of the Wami River and its estuary. These groups also acknowledge increasing salinity levels and the loss of mangroves as other key concerns. The identification of these mutual interests and shared concerns can help build common ground among stakeholders while the recognition of potential tensions can assist managers in balancing and reconciling the multiple needs and values of these different groups.
Resumo:
Estuaries are highly dynamic systems which may be modified in a climate change context. These changes can affect the biogeochemical cycles. Among the major impacts of climate change, the increasing rainfall events and sea level rise can be considered. This study aims to research the impact of those events in biogeochemical dynamics in the Tagus Estuary, which is the largest and most important estuary along the Portuguese coast. In this context a 2D biophysical model (MOHID) was implemented, validated and explored, through comparison with in-situ data. In order to study the impact of extreme rainfall events, which can be characterized by an high increase in freshwater inflow, three scenarios were set by changing the inputs from the main tributaries, Tagus and Sorraia Rivers. A realistic scenario considering one day of Tagus and Sorraia River extreme discharge, a scenario considering one day of single extreme discharge of the Tagus River and finally one considering the extreme runoff just from Sorraia River. For the mean sea level rise, two scenarios were also established. The first with the actual mean sea level value and the second considering an increase of 0.42 m. For the extreme rainfall events simulations, the results suggest that the biogeochemical characteristics of the Tagus Estuary are mainly influenced by Tagus River discharge. For sea level rise scenario, the results suggest a dilution in nutrient concentrations and an increase in Chl-a in specific areas.For both scenarios, the suggested increase in Chl-a concentration for specific estuarine areas, under the tested scenarios, can lead to events that promote an abnormal growth of phytoplankton (blooms) causing the water quality to drop and the estuary to face severe quality issues risking all the activities that depend on it.
Resumo:
Seasonal and interannual changes (1993e2012) of water temperature and transparency, river discharge, salinity, water quality properties, chlorophyll a (chl-a) and the carbon biomass of the main taxonomical phytoplankton groups were evaluated at a shallow station (~2 m) in the subtropical Patos Lagoon Estuary (PLE), Brazil. Large variations in salinity (0e35), due to a complex balance between Patos Lagoon outflow and oceanic inflows, affected significantly other water quality variables and phytoplankton dynamics, masking seasonal and interannual variability. Therefore, salinity effect was filtered out by means of a Generalized Additive Model (GAM). River discharge and salinity had a significant negative relation, with river discharge being highest and salinity lowest during July to October. Diatoms comprised the dominant phytoplankton group, contributing substantially to the seasonal cycle of chl-a showing higher values in austral spring/summer (September to April) and lowest in autumn/winter (May to August). PLE is a nutrient-rich estuary and the phytoplankton seasonal cycle was largely driven by light availability, with few exceptions in winter. Most variables exhibited large interannual variability. When varying salinity effect was accounted for, chl-a concentration and diatom biomass showed less irregularity over time, and significant increasing trends emerged for dinoflagellates and cyanobacteria. Long-term changes in phytoplankton and water quality were strongly related to variations in salinity, largely driven by freshwater discharge influenced by climatic variability, most pronounced for ENSO events. However, the significant increasing trend of the N:P ratio indicates that important environmental changes related to anthropogenic effects are undergoing, in addition to the hydrology in the PLE.
Resumo:
Sediments of Tamarindo estuary and its tributaries were evaluated in order to determine the effect of anthropogenic activities of the surrounding communities. The evaluation relied on texture, total phosphorus, organic matter, and heavy metal (Pb, Cu, Ni and Cr) analyses. The study spanned four sampling campaigns between October 2007 and April 2008, including four climatic seasons: rainy season, rainy-dry transition, dry season and dryrainy transition. Five sampling points were selected at Tamarindo estuary and three additional sites were set at Matapalo, Lomas and Lajas rivers. Ontario Ministry of the Environment regulation was used to evaluate sediment quality. It was determined that theanthropogenic activities of the surrounding communities exert a negative impact over the sediment quality; the pollution effect caused by such activities was rated as lower effect.
Resumo:
Ecological network analysis was applied in the Seine estuary ecosystem, northern France, integrating ecological data from the years 1996 to 2002. The Ecopath with Ecosim (EwE) approach was used to model the trophic flows in 6 spatial compartments leading to 6 distinct EwE models: the navigation channel and the two channel flanks in the estuary proper, and 3 marine habitats in the eastern Seine Bay. Each model included 12 consumer groups, 2 primary producers, and one detritus group. Ecological network analysis was performed, including a set of indices, keystoneness, and trophic spectrum analysis to describe the contribution of the 6 habitats to the Seine estuary ecosystem functioning. Results showed that the two habitats with a functioning most related to a stressed state were the northern and central navigation channels, where building works and constant maritime traffic are considered major anthropogenic stressors. The strong top-down control highlighted in the other 4 habitats was not present in the central channel, showing instead (i) a change in keystone roles in the ecosystem towards sediment-based, lower trophic levels, and (ii) a higher system omnivory. The southern channel evidenced the highest system activity (total system throughput), the higher trophic specialisation (low system omnivory), and the lowest indication of stress (low cycling and relative redundancy). Marine habitats showed higher fish biomass proportions and higher transfer efficiencies per trophic levels than the estuarine habitats, with a transition area between the two that presented intermediate ecosystem structure. The modelling of separate habitats permitted disclosing each one's response to the different pressures, based on their a priori knowledge. Network indices, although non-monotonously, responded to these differences and seem a promising operational tool to define the ecological status of transitional water ecosystems.
Resumo:
The present research, undertaken in a mangrove swamp in northeastern Brazil (Mamanguape River Estuary), examined the factors that led to the overwhelming acceptance of the tangle-netting technique by crab harvesters in detriment to the now illegal tamping technique. Both techniques are the only ones currently used at our study site and in many other areas in Brazil, despite being prohibited by law. Data were collected through direct observations to determine capture efficiency, productivity, daily production, selectivity, and harvesting effort, and through interviews with crab harvesters, focusing on their perceptions of the capture techniques, the conditions of crab stocks and the sales price of a dozen crabs. Our results indicated that the two capture techniques did not significantly differ in terms of their efficiency or productivity, but daily production rates differed significantly, being greater using tangle-netting. The tangle-netting permits a greater harvesting effort (6 hours and 34 min) compared to tamping (4 hours and 19 min). Tangle-netting is also less selective than tamping indicated by the larger number of captured smaller specimens, including females. This results in a lower average sales price for a dozen crabs caught by tangle-netting (US$ 0.95) compared to tamping (US$ 1.02). The greater daily production of crab harvesters using the tangle-netting technique nevertheless increased their net gain, explaining their preference for this method, Given that tangle-netting results in greater harvesting pressure but lower selectivity compared to tamping, it may potentially be less sustainable. All of the crab harvesters interviewed having more than 20 years of experience (n = 34) stated they perceived that stocks of U. cordatus had become reduced over the last 20 years, together with average crab sizes. It is now important to examine the structure of the local U. cordatus population and to assess its fishery to allow evaluating whether the illegal, but prominent tangle-netting and tamping mangrove crab capture techniques are sustainable or not. We further suggest improving the dialogue between decision makers and fishermen, which barely exists to date, to initiate a discussion about possible ways of resolving the current situation of illegality of the fishermen. This will be key to achieving effective sustainable co-management of this important natural mangrove forest resource.
Resumo:
Tese de Doutoramento, Ciências do Ambiente (Ordenamento do Território), 5 de Abril de 2013, Universidade dos Açores.
Resumo:
The Ythan Estuary in Aberdeenshire is a Site of Special Scientific Interest due to the numerous protected species which incorporate it into their ecosystem. In recent years algae growth in the estuary has been seen to increase, causing concern over the integrity of the estuary as a habitat for wildlife. By examining sediment, river flow, nutrient levels and temperature it is possible to identify the driving factors behind this increased algal growth. Using data gathered in the field as well as historical climate data the contribution of each of these factors to algae growth can be determined.