790 resultados para Tachinidae flies
Resumo:
Among fruit-fly species of the genus Drosophila there is remarkable variation in sperm length, with some species producing gigantic sperm (e.g., > 10 times total male body length). These flies are also unusual in that males of some species exhibit a prolonged adult nonreproductive phase. We document sperm length, body size, and sex-specific ages of reproductive maturity for 42 species of Drosophila and, after controlling for phylogeny, test hypotheses to explain the variation in rates of sexual maturation. Results suggest that delayed male maturity is a cost of producing long sperm. A possible physiological mechanism to explain the observed relationship is discussed.
Resumo:
Mating triggers behavioral and physiological changes in the Drosophila melanogaster female, including an elevation of egg laying. Seminal fluid molecules from the male accessory gland are responsible for initial behavioral changes, but persistence of these changes requires stored sperm. Using genetic analysis, we have identified a seminal fluid protein that is responsible for an initial elevation of egg laying. This molecule, Acp26Aa, has structural features of a prohormone and contains a region with amino acid similarity to the egg-laying hormone of Aplysia. Acp26Aa is transferred to the female during mating, where it undergoes processing. Here we report the generation and analysis of mutants, including a null, in Acp26Aa. Females mated to male flies that lack Acp26Aa lay fewer eggs than do mates of normal males. This effect is apparent only on the first day after mating. The null mutation has no other detectable physiological or behavioral effects on the male or the mated female.
Resumo:
Induction of Drosophila hsp70 protein was detected during aging in flight muscle and leg muscle in the absence of heat shock, using an hsp70-specific monoclonal antibody, and in transgenic flies containing hsp70-beta-galactosidase fusion protein reporter constructs. While hsp70 and reporter proteins were induced during aging, hsp70 message levels were not, indicating that aging-specific induction is primarily posttranscriptional. In contrast, hsp22 and hsp23 were found to be induced during aging at the RNA level and with a broader tissue distribution. The same muscle-specific hsp70 reporter expression pattern was observed in young flies mutant for catalase (H2O2:H2O2 oxidoreductase, EC 1.11.1.6). In catalase (cat) hypomorphic lines where flies survived to older ages, the time course of hsp70 reporter expression during aging was accelerated, and the initial and ultimate levels of expression were increased. The hsp70 reporter was also induced in young flies mutant for copper/zinc superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1). Taken together, the results suggest that aging-specific hsp70 expression may be a result of oxidative damage.
Resumo:
In this paper we report a recessive mutation, immune deficiency (imd), that impairs the inducibility of all genes encoding antibacterial peptides during the immune response of Drosophila. When challenged with bacteria, flies carrying this mutation show a lower survival rate than wild-type flies. We also report that, in contrast to the antibacterial peptides, the antifungal peptide drosomycin remains inducible in a homozygous imd mutant background. These results point to the existence of two different pathways leading to the expression of two types of target genes, encoding either the antibacterial peptides or the antifungal peptide drosomycin.
Resumo:
The silver (svr) gene of Drosophila melanogaster is required for viability, and severe mutant alleles result in death prior to eclosion. Adult flies homozygous or hemizygous for weaker alleles display several visible phenotypes, including cuticular structures that are pale and silvery in color due to reduced melanization. We have identified and cloned the DNA encoding the svr gene and determined the sequence of several partially overlapping cDNAs derived from svr mRNAs. The predicted amino acid sequence of the polypeptides encoded by these cDNAs indicates that the silver proteins are members of the family of preprotein-processing carboxypeptidases that includes the human carboxypeptidases E, M, and N. One class of svr mRNAs is alternatively spliced to encode at least two polyproteins, each of which is composed of two carboxypeptidase domains.
Resumo:
We have used the green fluorescent protein (GFP) from the jellyfish Aequorea victoria as a vital marker/reporter in Drosophila melanogaster. Transgenic flies were generated in which GFP was expressed under the transcriptional control of the yeast upstream activating sequence that is recognized by GAL4. These flies were crossed to several GAL4 enhancer trap lines, and expression of GFP was monitored in a variety of tissues during development using confocal microscopy. Here, we show that GFP could be detected in freshly dissected ovaries, imaginal discs, and the larval nervous system without prior fixation or the addition of substrates or antibodies. We also show that expression of GFP could be monitored in intact living embryos and larvae and in cultured egg chambers, allowing us to visualize dynamic changes in gene expression during real time.
Resumo:
From an extract of Drosophila melanogaster head homogenates, a membrane fraction can be isolated that has the same sedimentation properties as vertebrate synaptic vesicles and contains Drosophila synaptotagmin. The fraction disappears from homogenates of temperature-sensitive (ts) mutant shibire(ts1) (shi(ts1)) flies paralyzed by exposure to non-permissive temperatures, and reappears on return to permissive temperatures. Since reversible, temperature-dependent depletion of synaptic vesicles is known to occur in shibire(ts1) flies, we conclude that the fraction we have identified contains synaptic vesicles. We have examined the fate of synaptic vesicle membrane proteins in shibire flies at nonpermissive temperatures and found that all of these vesicle antigens are transferred to rapidly sedimenting membranes and codistribute with a plasma membrane marker by both glycerol velocity and metrizamide density sedimentation and by confocal microscopy. Three criteria were used to establish that other neuron-specific antigens--neuronal synaptobrevin and cysteine-string proteins--are legitimate components of synaptic vesicles: cosedimentation with Drosophila synaptotagmin, immunoadsorption, and disappearance of these antigens from the vesicle fractions in paralyzed shibire flies.
Resumo:
The simple gas ethylene affects numerous physiological processes in the growth and development of higher plants. With the use of molecular genetic approaches, we are beginning to learn how plants perceive ethylene and how this signal is transduced. Components of ethylene signal transduction are defined by ethylene response mutants in Arabidopsis thaliana. The genes corresponding to two of these mutants, etr1 and etr1, have been cloned. The ETR1 gene encodes a homolog of two-component regulators that are known almost exclusively in prokaryotes. The two-component regulators in prokaryotes are involved in the perception and transduction of a wide range of environmental signals leading to adaptive responses. The CTR1 gene encodes a homolog of the Raf family of serine/threonine protein kinases. Raf is part of a mitogen-activated protein kinase cascade known to regulate cell growth and development in mammals, worms, and flies. The ethylene response pathway may, therefore, exemplify a conserved protein kinase cascade regulated by a two-component system. The dominance of all known mutant alleles of ETR1 may be due to either constitutive activation of the ETR1 protein or dominant interference of wild-type activity. The discovery of Arabidopsis genes encoding proteins related to ETR1 suggests that the failure to recover recessive etr1 mutant alleles may be due to the presence of redundant genes.
Resumo:
Introdução: A leishmaniose visceral (LV) é um importante problema de saúde pública no Brasil, com cerca 3000 mil casos notificados anualmente. Nos últimos anos, a LV tem ampliado sua distribuição em vários estados do país, associada principalmente aos processos socioambientais, antrópicos e migratórios. A LV é causada pela infecção com Leishmania infantum chagasi, transmitida, principalmente, por Lutzomyia longipalpis (Diptera: Psychodidae). Este flebotomíneo apresenta ampla distribuição nas Américas, todavia, evidências sugerem que se constitui em um complexo de espécies crípticas. A dinâmica de transmissão da LV é modulada por fatores ecológicos locais que influenciam a interação entre populações do patógeno, do vetor e dos hospedeiros vertebrados. Portanto, o estudo das variáveis associadas a esta interação pode contribuir para elucidar aspectos dos elos epidemiológicos e contribuir para a tomada de decisões em saúde pública. Objetivo: Avaliar parâmetros relacionados à capacidade vetorial da população de Lu. longipalpis presente em área urbana do município de Panorama, estado de São Paulo. Métodos: Foram realizadas capturas mensais durante 48 meses para avaliar a distribuição espaço-temporal de Lu. longipalpis e investigar a circulação de Le. i. chagasi. Também foram realizados os seguintes experimentos com o vetor: captura-marcação-soltura-recaptura para estimar a sobrevida da população e a duração do seu ciclo gonotrófico, a atratividade dos hospedeiros mais frequentes em áreas urbanas, a proporção de repasto em cão, infecção experimental e competência vetorial. Resultados: Observou-se que no município de Panorama, Lu. longipalpis apresentou as frequências mais elevadas na estação chuvosa (entre outubro e março), maior densidade em áreas com presença de vegetação e criação de animais domésticos, locais aonde também foi demonstrada a circulação natural de espécimes de Lu. longipalpis infectados com Le. i. chagasi. Além disto, foi corroborado que a população de Lu. longipalpis apresentou hábito hematofágico eclético, altas taxas de sobrevivência e que foi competente para transmitir o agente da LV. Nos experimentos de laboratório foi evidenciada a heterogeneidade na infecção de fêmeas de Lu. longipalpis desafiadas a se alimentarem em cães comprovadamente infectados por L. i. chagasi e o rápido desenvolvimento do parasita neste vetor natural. Conclusões. As observações do presente estudo corroboram a capacidade vetora de Lu. longipalpis para transmitir a Le. i. chagasi e ressaltam a importância da espécie na transmissão do agente etiológico da LV. Ações de manejo ambiental, educação e promoção à saúde são recomendadas às autoridades municipais para diminuir o risco potencial de infecção na população humana e canina, considerando-se o elevado potencial vetor de Lu. longipalpis e a presença de condições que favorecem a interação dos componentes da tríade epidemiológica da LV.
Resumo:
The diet of Common Chiffchaffs Phylloscopus collybita wintering in a Mediterranean wetland (El Hondo Natural Park, SE Spain) was studied by analysing the gizzard content of 17 individuals that died accidentally when trapped for ringing. Prey availability was assessed via water-trap sampling over two winters. The bulk of the diet was composed of midges (Chironomidae), which were found in all the gizzards and represented approximately 95% of the prey. Brachycera flies were one of the most captured taxa in the water-traps but represented less than 0.5% of the total number of prey consumed. Compositional analysis revealed very strong prey selection, with Chiffchaffs selecting clumped and less mobile prey, such as chironomids, and avoiding abundant but fast-escaping prey, such as Brachycera.
Resumo:
Paper-covered notebook containing handwritten poems and verse by Harvard graduate John Allen. Some of the poems refer to Allen’s illnesses in October 1772. The notebook also contains a short list titled “The Gentleman that I wrote diplomas for," with a list of sixteen individuals who received degrees from Harvard. The inside cover includes the inscription: “John Allen – November 4, 1772. Poetic Composition.” “Dr. T. C. Gilman” is stamped on cover.
Resumo:
Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.
Resumo:
Animals from flies to humans adjust their development in response to environmental conditions through a series of developmental checkpoints, which alter the sensitivity of organs to environmental perturbation. Despite their importance, we know little about the molecular mechanisms through which this change in sensitivity occurs. Here we identify two phases of sensitivity to larval nutrition that contribute to plasticity in ovariole number, an important determinant of fecundity, in Drosophila melanogaster. These two phases of sensitivity are separated by the developmental checkpoint called "critical weight"; poor nutrition has greater effects on ovariole number in larvae before critical weight than after. We find that this switch in sensitivity results from distinct developmental processes. In precritical weight larvae, poor nutrition delays the onset of terminal filament cell differentiation, the starting point for ovariole development, and strongly suppresses the rate of terminal filament addition and the rate of increase in ovary volume. Conversely, in postcritical weight larvae, poor nutrition affects only the rate of increase in ovary volume. Our results further indicate that two hormonal pathways, the insulin/insulin-like growth factor and the ecdysone-signaling pathways, modulate the timing and rates of all three developmental processes. The change in sensitivity in the ovary results from changes in the relative contribution of each pathway to the rates of terminal filament addition and increase in ovary volume before and after critical weight. Our work deepens our understanding of how hormones act to modify the sensitivity of organs to environmental conditions, thereby affecting their plasticity.
Resumo:
"The present volume contains all the essays on flies, or Diptera, from the Souvenirs entomologiques, to which I have added, in order to make the dimensions uniform with those of the other volumes of the series, the purely autobiographical essays comprised in the Souvenirs."--Translator's note.