903 resultados para TRICKLING FILTERS
Resumo:
A method of designing multi-cavity infrared narrowband filters for bandwidth between 10% and 20% is presended: The method is based on a Tschebyshev prototype. The theoretical indices from these are simulated by Herpin equivalent layers, the outer layers may be also simulated by Herrmann's asymetrical tri-layer. The new algorithm of filter design can easily be implemented in any microcomputer.
Resumo:
Nonpolarizing edge filters have recently becmoe important to separate those IR gas bands used in atmospheric sensing into their P and R branches, namely, the v2 of C02 at a 15µm wavelength. Whereas Thelen has developed all necessary principles for the entire class of nonpolarizing filters it remains difficult to subsittute ither refractive indices (such as infrared) into a visible-region design or assess the effect on consequent performance.
Resumo:
A Kalman filter algorithm has been applied to interpret the optical reflectance excursions during vacuum deposition of infrared coatings and multilayer thin-film filters. The application has been described in detail elsewhere and this paper now reports on-line experience for estimating deposition rate and thickness. The estimation proved sufficiently reliable to firstly 'navigate' regular manufacture (as controlled by a skilled operator) and to subsequently reproduce the skill without interpretation or intervention whilst maintaining exemplary product quality. Optical control by means of this Kalman filter application is therefore considered suitable as a basis for the automated manufacture of infrared coatings and multilayer thin-film filters.
Resumo:
Little has so far been reported on the performance of the near-far resistant CDMA detectors in the presence of the synchronization errors. Starting with the general mathematical model of matched filters, this paper examines the effects of three classes of synchronization errors (i.e. time-delay errors, carrier phase errors, and carrier frequency errors) on the performance (bit error rate and near-far resistance) of an emerging type of near-far resistant coherent DS/SSMA detectors, i.e. the linear decorrelating detector (LDD). For comparison, the corresponding results for the conventional detector are also presented. It is shown that the LDD can still maintain a considerable performance advantage over the conventional detector even when some synchronization errors exist. Finally, several computer simulations are carried out to verify the theoretical conclusions.
Resumo:
This paper proposes the subspace-based space-time (ST) dual-rate blind linear detectors for synchronous DS/CDMA systems, which can be viewed as the ST extension of our previously presented purely temporal dual-rate blind linear detectors. The theoretical analyses on their performances are also carried out. Finally, the two-stage ST blind detectors are presented, which combine the adaptive purely temporal dual-rate blind MMSE filters with the non-adaptive beamformer. Their adaptive stages with parallel structure converge much faster than the corresponding adaptive ST dual-rate blind MMSE detectors, while having a comparable computational complexity to the latter.
Resumo:
Little has been reported on the performance of near-far resistant CDMA detectors in the presence of system parameter estimation errors (SPEEs). Starting with the general mathematical model of matched filters, the paper examines the effects of three classes of SPEEs, i.e., time-delay, carrier phase, and carrier frequency errors, on the performance (BER) of an emerging type of near-far resistant coherent DS/SSMA detector, i.e., the linear decorrelating detector. For comparison, the corresponding results for the conventional detector are also presented. It is shown that the linear decorrelating detector can still maintain a considerable performance advantage over the conventional detector even when some SPEEs exist.
Resumo:
This paper presents the theoretical development of a nonlinear adaptive filter based on a concept of filtering by approximated densities (FAD). The most common procedures for nonlinear estimation apply the extended Kalman filter. As opposed to conventional techniques, the proposed recursive algorithm does not require any linearisation. The prediction uses a maximum entropy principle subject to constraints. Thus, the densities created are of an exponential type and depend on a finite number of parameters. The filtering yields recursive equations involving these parameters. The update applies the Bayes theorem. Through simulation on a generic exponential model, the proposed nonlinear filter is implemented and the results prove to be superior to that of the extended Kalman filter and a class of nonlinear filters based on partitioning algorithms.
Resumo:
Adaptive filters used in code division multiple access (CDMA) receivers to counter interference have been formulated both with and without the assumption of training symbols being transmitted. They are known as training-based and blind detectors respectively. We show that the convergence behaviour of the blind minimum-output-energy (MOE) detector can be quite easily derived, unlike what was implied by the procedure outlined in a previous paper. The simplification results from the observation that the correlation matrix determining convergence performance can be made symmetric, after which many standard results from the literature on least mean square (LMS) filters apply immediately.
Resumo:
This paper describes a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation models using the extended Kalman filter. The method involves the use of a time-varying linearisation of a semi-explicit index one differential-algebraic equation. The estimation technique consists of a simplified extended Kalman filter that is integrated with the differential-algebraic equation model. The paper describes a simulation study using a model of a batch chemical reactor. It also reports a study based on experimental data obtained from a mixing process, where the model of the system is solved using the sequential modular method and the estimation involves a bank of extended Kalman filters.
Resumo:
This paper describes a method for dynamic data reconciliation of nonlinear systems that are simulated using the sequential modular approach, and where individual modules are represented by a class of differential algebraic equations. The estimation technique consists of a bank of extended Kalman filters that are integrated with the modules. The paper reports a study based on experimental data obtained from a pilot scale mixing process.
Resumo:
Adaptive least mean square (LMS) filters with or without training sequences, which are known as training-based and blind detectors respectively, have been formulated to counter interference in CDMA systems. The convergence characteristics of these two LMS detectors are analyzed and compared in this paper. We show that the blind detector is superior to the training-based detector with respect to convergence rate. On the other hand, the training-based detector performs better in the steady state, giving a lower excess mean-square error (MSE) for a given adaptation step size. A novel decision-directed LMS detector which achieves the low excess MSE of the training-based detector and the superior convergence performance of the blind detector is proposed.
Resumo:
Three experiments measured constancy in speech perception, using natural-speech messages or noise-band vocoder versions of them. The eight vocoder-bands had equally log-spaced center-frequencies and the shapes of corresponding “auditory” filters. Consequently, the bands had the temporal envelopes that arise in these auditory filters when the speech is played. The “sir” or “stir” test-words were distinguished by degrees of amplitude modulation, and played in the context; “next you’ll get _ to click on.” Listeners identified test-words appropriately, even in the vocoder conditions where the speech had a “noise-like” quality. Constancy was assessed by comparing the identification of test-words with low or high levels of room reflections across conditions where the context had either a low or a high level of reflections. Constancy was obtained with both the natural and the vocoded speech, indicating that the effect arises through temporal-envelope processing. Two further experiments assessed perceptual weighting of the different bands, both in the test word and in the context. The resulting weighting functions both increase monotonically with frequency, following the spectral characteristics of the test-word’s [s]. It is suggested that these two weighting functions are similar because they both come about through the perceptual grouping of the test-word’s bands.
Resumo:
We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.
Resumo:
In this study, we compare two different cyclone-tracking algorithms to detect North Atlantic polar lows, which are very intense mesoscale cyclones. Both approaches include spatial filtering, detection, tracking and constraints specific to polar lows. The first method uses digital bandpass-filtered mean sea level pressure (MSLP) fieldsin the spatial range of 200�600 km and is especially designed for polar lows. The second method also uses a bandpass filter but is based on the discrete cosine transforms (DCT) and can be applied to MSLP and vorticity fields. The latter was originally designed for cyclones in general and has been adapted to polar lows for this study. Both algorithms are applied to the same regional climate model output fields from October 1993 to September 1995 produced from dynamical downscaling of the NCEP/NCAR reanalysis data. Comparisons between these two methods show that different filters lead to different numbers and locations of tracks. The DCT is more precise in scale separation than the digital filter and the results of this study suggest that it is more suited for the bandpass filtering of MSLP fields. The detection and tracking parts also influence the numbers of tracks although less critically. After a selection process that applies criteria to identify tracks of potential polar lows, differences between both methods are still visible though the major systems are identified in both.
Resumo:
The problem of spurious excitation of gravity waves in the context of four-dimensional data assimilation is investigated using a simple model of balanced dynamics. The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode, and can be initialized such that the model evolves on a so-called slow manifold, where the fast motion is suppressed. Identical twin assimilation experiments are performed, comparing the extended and ensemble Kalman filters (EKF and EnKF, respectively). The EKF uses a tangent linear model (TLM) to estimate the evolution of forecast error statistics in time, whereas the EnKF uses the statistics of an ensemble of nonlinear model integrations. Specifically, the case is examined where the true state is balanced, but observation errors project onto all degrees of freedom, including the fast modes. It is shown that the EKF and EnKF will assimilate observations in a balanced way only if certain assumptions hold, and that, outside of ideal cases (i.e., with very frequent observations), dynamical balance can easily be lost in the assimilation. For the EKF, the repeated adjustment of the covariances by the assimilation of observations can easily unbalance the TLM, and destroy the assumptions on which balanced assimilation rests. It is shown that an important factor is the choice of initial forecast error covariance matrix. A balance-constrained EKF is described and compared to the standard EKF, and shown to offer significant improvement for observation frequencies where balance in the standard EKF is lost. The EnKF is advantageous in that balance in the error covariances relies only on a balanced forecast ensemble, and that the analysis step is an ensemble-mean operation. Numerical experiments show that the EnKF may be preferable to the EKF in terms of balance, though its validity is limited by ensemble size. It is also found that overobserving can lead to a more unbalanced forecast ensemble and thus to an unbalanced analysis.