968 resultados para TIGHT-JUNCTION STRANDS
Resumo:
Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others.
Resumo:
The RuvA and RuvB proteins of Escherichia coli, which are induced in response to DNA damage, are important in the formation of heteroduplex DNA during genetic recombination and related recombinational repair processes. In vitro studies show that RuvA binds Holiday junctions and acts as a specificity factor that targets the RuvB ATPase, a hexameric ring protein, to the junction. Together, RuvA and RuvB promote branch migration, an ATP-dependent reaction that increases the length of the heteroduplex DNA. Electron microscopic visualization of RuvAB now provides a new insight into the mechanism of this process. We observe the formation of a tripartite protein complex in which RuvA binds the crossover and is sandwiched between two hexameric rings of RuvB. The Holliday junction within this complex adopts a square-planar structure. We propose a molecular model for branch migration, a unique feature of which is the role played by the two oppositely oriented RuvB ring motors.
Resumo:
A new genus, Travassosnema (Guyanemidae, Dracunculoidea) is proposed to include filariid worms having esophagus divided into muscular and glandular parts, with esophageal appendix near junction with intestine; anus functional; vulva anterior, well developed and functional in mature females. Travassonema travassosi sp. n., a parasite of Acestrorhynchus lacustris Reinhardt, 1874 from Três Marias Reservoir (São Francisco River) in the State of Minas Gerais, Brazil, is described. The generic and the specific names are a tribure to Brazilian parasitologist Lauro Travassos at his birth centenary.
Resumo:
Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics.
Resumo:
In this paper we analyze the persistence of aggregate real exchange rates (RERs) for a group of EU-15 countries by using sectoral data. The tight relation between aggregate and sectoral persistence recently investigated by Mayoral (2008) allows us to decompose aggregate RER persistence into the persistence of its different subcomponents. We show that the distribution of sectoral persistence is highly heterogeneous and very skewed to the right, and that a limited number of sectors are responsible for the high levels of persistence observed at the aggregate level. We use quantile regression to investigate whether the traditional theories proposed to account for the slow reversion to parity (lack of arbitrage due to nontradibilities or imperfect competition and price stickiness) are able to explain the behavior of the upper quantiles of sectoral persistence. We conclude that pricing to market in the intermediate goods sector together with price stickiness have more explanatory power than variables related to the tradability of the goods or their inputs.
Resumo:
In this paper we unify, simplify, and extend previous work on the evolutionary dynamics of symmetric N-player matrix games with two pure strategies. In such games, gains from switching strategies depend, in general, on how many other individuals in the group play a given strategy. As a consequence, the gain function determining the gradient of selection can be a polynomial of degree N-1. In order to deal with the intricacy of the resulting evolutionary dynamics, we make use of the theory of polynomials in Bernstein form. This theory implies a tight link between the sign pattern of the gains from switching on the one hand and the number and stability of the rest points of the replicator dynamics on the other hand. While this relationship is a general one, it is most informative if gains from switching have at most two sign changes, as is the case for most multi-player matrix games considered in the literature. We demonstrate that previous results for public goods games are easily recovered and extended using this observation. Further examples illustrate how focusing on the sign pattern of the gains from switching obviates the need for a more involved analysis.
Resumo:
Extensive chromosome size polymorphism in Plasmodium berghei in vivo mitotic multiplication. Size differences between homologous chromosomes mainly involve rearrangements in the subtelomeric regions while internal chromosomal regions are more conserved. Size differences are almost exclusively due to differences in the copy number of a 2.3 kb subtelomeric repeat unit. Not only deletion of 2.3 kb repeats occurs, but addition of new copies of this repeat sometimes results in the formation of enlarged chromosomes. Even chromosomes which originally lack 2.3 kb repeats, can acquire these during mitotic multiplication. In one karyotype mutant, 2.3 kb repeats were inserted within one of the original telomeres of chromosome 4, creating an internal stretch oftelomeric repeats. Chromosome translocation can contribute to chromosome size polymorphism as well We found a karyotype mutant in which chromosome 7 with a size of about 1.4 Mb is translocated to chromosome 13/14 with a size of about 3 Mb, resulting in a rearranged chromosome, which was shown to contain a junction between internal DNA sequences of chromosome 13/14 and subtelomeric 2.3 kb repeats of chromosome 7. In this mutant a new chromosome of 1.4 Mb is present which consists of part of chromosome 13/14.
Resumo:
We demonstrate that RecA protein can mediate annealing of complementary DNA strands in vitro by at least two different mechanisms. The first annealing mechanism predominates under conditions where RecA protein causes coaggregation of single-stranded DNA (ssDNA) molecules and where RecA-free ssDNA stretches are present on both reaction partners. Under these conditions annealing can take place between locally concentrated protein-free complementary sequences. Other DNA aggregating agents like histone H1 or ethanol stimulate annealing by the same mechanism. The second mechanism of RecA-mediated annealing of complementary DNA strands is best manifested when preformed saturated RecA-ssDNA complexes interact with protein-free ssDNA. In this case, annealing can occur between the ssDNA strand resident in the complex and the ssDNA strand that interacts with the preformed RecA-ssDNA complex. Here, the action of RecA protein reflects its specific recombination promoting mechanism. This mechanism enables DNA molecules resident in the presynaptic RecA-DNA complexes to be exposed for hydrogen bond formation with DNA molecules contacting the presynaptic RecA-DNA filament.
Resumo:
AIMS OF THE STUDY: Analysis of indications and results of paediatric renal transplantation in a single centre, before and after the introduction of cyclosporine A (CSA). METHODS: Historical retrospective study. RESULTS: 19 transplantations were performed in 14 patients (5 second grafts) between 1971 and 1987 (group I). 13 patients were transplanted between 1988 and 1998 (no second transplant) (group II). In group II, all the patients had immunosuppression with CSA, but none in group I. Group II, with CSA, showed better renal survival than patients without CSA. In group I, obstructive uropathies (posterior urethral valves, pyelo-ureteral junction stenosis, vesico-ureteral reflux) represent a common cause (35%) of terminal chronic renal failure (TCRF), whereas in group II they represent only 15% of the causes and chronic glomerulonephritis is the most common cause (69%) of TCRF. Acute and chronic graft rejections were the cause of 9 and 1 graft losses in group I and II respectively. Living related donors account for 14% of all renal transplantations in group I and 46% in group II. CONCLUSIONS: The incidence of paediatric patients referred to Lausanne for TCRF is stable. We have observed a constant and steady decrease in obstructive uropathies leading to TCRF and renal transplantations, whereas glomerulonephritis are increasingly frequent. Graft survival has much improved since the introduction of cyclosporine A, without an increase in morbidity. In carefully selected cases, intrafamilial renal transplantation provides good results and helps to shorten the time spent on dialysis.
Resumo:
BACKGROUND: Early repolarization is a common electrocardiographic finding that is generally considered to be benign. Its potential to cause cardiac arrhythmias has been hypothesized from experimental studies, but it is not known whether there is a clinical association with sudden cardiac arrest. METHODS: We reviewed data from 206 case subjects at 22 centers who were resuscitated after cardiac arrest due to idiopathic ventricular fibrillation and assessed the prevalence of electrocardiographic early repolarization. The latter was defined as an elevation of the QRS-ST junction of at least 0.1 mV from baseline in the inferior or lateral lead, manifested as QRS slurring or notching. The control group comprised 412 subjects without heart disease who were matched for age, sex, race, and level of physical activity. Follow-up data that included the results of monitoring with an implantable defibrillator were obtained for all case subjects. RESULTS: Early repolarization was more frequent in case subjects with idiopathic ventricular fibrillation than in control subjects (31% vs. 5%, P<0.001). Among case subjects, those with early repolarization were more likely to be male and to have a history of syncope or sudden cardiac arrest during sleep than those without early repolarization. In eight subjects, the origin of ectopy that initiated ventricular arrhythmias was mapped to sites concordant with the localization of repolarization abnormalities. During a mean (+/-SD) follow-up of 61+/-50 months, defibrillator monitoring showed a higher incidence of recurrent ventricular fibrillation in case subjects with a repolarization abnormality than in those without such an abnormality (hazard ratio, 2.1; 95% confidence interval, 1.2 to 3.5; P=0.008). CONCLUSIONS: Among patients with a history of idiopathic ventricular fibrillation, there is an increased prevalence of early repolarization.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
Each cell is equipped with two copies (alleles) of each autosomal gene. While the vast majority use both alleles, occasional genes are expressed from a single allele. The reason for mono-allelic expression is not always evident and can serve distinct purposes. First, it may facilitate the tight control over the dosage of certain gene products such as some growth factors and their receptors or X-linked genes. Second, the differential usage of the two parental alleles may reflect the mechanisms that ensure mono-specificity, e.g. olfactory receptors, T and B cell receptors. The context of allele-specific expression of the murine Ly49 natural killer (NK) cell receptor genes suggests that their allele-specific expression reflects a process that generates clonal variability.
Resumo:
Erythrokeratodermia variabilis (EKV) is an autosomal dominant keratinization disorder characterized by migratory erythematous lesions and fixed keratotic plaques. All families with EKV show mapping to chromosome 1p34-p35, and mutations in the gene for connexin 31 (Cx31) have been reported in some but not all families. We studied eight affected and three healthy subjects in an Israeli family, of Kurdish origin, with EKV. After having mapped the disorder to chromosome 1p34-p35, we found no mutations in the genes for Cx31, Cx31.1, and Cx37. Further investigation revealed a heterozygous T-->C transition leading to the missense mutation (F137L) in the human gene for Cx30.3 that colocalizes on chromosome 1p34-p35. This nucleotide change cosegregated with the disease and was not found in 200 alleles from normal individuals. This mutation concerns a highly conserved phenylalanine, in the third transmembrane region of the Cx30.3 molecule, known to be implicated in the wall formation of the gap-junction pore. Our results show that mutations in the gene for Cx30.3 can be causally involved in EKV and point to genetic heterogeneity of this disorder. Furthermore, we suggest that our family presents a new type of EKV because of the hitherto unreported association with erythema gyratum repens.
Resumo:
Much of the self-image of the Western university hangs on the idea that research and teaching are intimately connected. The central axiom here is that research and teaching are mutually supportive of each other. An institution lacking such a set of relationships between research and teaching falls short of what it means to be a university. This set of beliefs raises certain questions: Is it the case that the presence of such a mutually supportive set of relationships between research and teaching is a necessary condition of the fulfilment of the idea of the university? (A conceptual question). And is it true that, in practice today, such a mutually supportive set of relationships between research and teaching characterises universities? (An empirical question). In my talk, I want to explore these matters in a critical vein. I shall suggest that: a) In practice today, such a mutually supportive set of relationships between research and teaching is in jeopardy. Far from supporting each other, very often research and teaching contend against each other. Research and teaching are becoming two separate ideologies, with their own interest structures. b) Historically, the supposed tight link between research and teaching is both of recent origin and far from universally achieved in universities. Institutional separateness between research and teaching is and has been evident, both across institutions and even across departments in the same institution. c) Conceptually, research and teaching are different activities: each is complex and neither is reducible to the other. In theory, therefore, research and teaching may be said to constitute a holy alliance but in practice, we see more of an unholy alliance. If, then, in an ideal world, a positive relationship between research and teaching is still a worthwhile goal, how might it be construed and worked for? Seeing research and teaching as two discrete and unified sets of activity is now inadequate. Much better is a construal of research and teaching as themselves complexes, as intermingling pools of activity helping to form the liquid university that is emerging today. On this view, research and teaching are fluid spaces, ever on the move, taking up new shapes, and themselves dividing and reforming, as the university reworks its own destiny in modern society. On such a perspective, working out a productive relationship between research and teaching is a complex project. This is an alliance that is neither holy nor unholy. It is an uneasy alliance, with temporary accommodations and continuous new possibilities.
Resumo:
Myotonic dystrophy Type 1 (DM-1) is caused by abnormal expansion of a (CTG) repeat located in the DM protein kinase gene. Respiratory problems have long been recognized to be a major feature of this disorder. Because respiratory failure can be associated with dysfunction of phrenic nerves and diaphragm muscle, we examined the diaphragm and respiratory neural network in transgenic mice carrying the human genomic DM-1 region with expanded repeats of more than 300 CTG, a valid model of the human disease. Morphologic and morphometric analyses revealed distal denervation of diaphragm neuromuscular junctions in DM-1 transgenic mice indicated by a decrease in the size and shape complexity of end-plates and a reduction in the concentration of acetyl choline receptors on the postsynaptic membrane. More importantly, there was a significant reduction in numbers of unmyelinated, but not of myelinated, fibers in DM-1 phrenic nerves; no morphologic alternations of the nerves or loss of neuronal cells were detected in medullary respiratory centers or cervical phrenic motor neurons. Because neuromuscular junctions are involved in action potential transmission and the afferent phrenic unmyelinated fibers control the inspiratory activity, our results suggest that the respiratory impairment associated with DM-1 may be partially due to pathologic alterations in neuromuscular junctions and phrenic nerves.