999 resultados para TERBIUM
Resumo:
Selected basalts from a suite of dredged and drilled samples (IPOD sites 525, 527, 528 and 530) from the Walvis Ridge have been analysed to determine their rare earth element (REE) contents in order to investigate the origin and evolution of this major structural feature in the South Atlantic Ocean. All of the samples show a high degree of light rare earth element (LREE) enrichment, quite unlike the flat or depleted patterns normally observed for normal mid-ocean ridge basalts (MORBs). Basalts from Sites 527, 528 and 530 show REE patterns characterised by an arcuate shape and relatively low (Ce/Yb)N ratios (1.46-5.22), and the ratios show a positive linear relationship to Nb content. A different trend is exhibited by the dredged basalts and the basalts from Site 525, and their REE patterns have a fairly constant slope, and higher (Ce/Yb)N ratios (4.31-8.50). These differences are further reflected in the ratios of incompatible trace elements, which also indicate considerable variations within the groups. Mixing hyperbolae for these ratios suggest that simple magma mixing between a 'hot spot' type of magma, similar to present-day volcanics of Tristan da Cunha, and a depleted source, possibly similar to that for magmas being erupted at the Mid-Atlantic Ridge, was an important process in the origin of parts of the Walvis Ridge, as exemplified by Sites 527, 528 and 530. Site 525 and dredged basalts cannot be explained by this mixing process, and their incompatible element ratios suggest either a mantle source of a different composition or some complexity to the mixing process. In addition, the occurrence of different types of basalt at the same location suggests there is vertical zonation within the volcanic pile, with the later erupted basalts becoming more alkaline arid more enriched in incompatible elements. The model proposed for the origin and evolution of the Walvis Ridge involves an initial stage of eruption in which the magma was essentially a mixture of enriched and depleted end-member sources, with the N-MORB component being small. The dredged basalts and Site 525, which represent either later-stage eruptives or those close to the hot spot plume, probably result from mixing of the enriched mantle source with variable amounts and variable low degrees of partial melting of the depleted mantle source. As the volcano leaves the hot spot, these late-stage eruptives continue for some time. The change from tholeiitic to alkalic volcanism is probably related either to evolution in the plumbing system and magma chamber of the individual volcano, or to changes in the depth of origin of the enriched mantle source melt, similar to processes in Hawaiian volcanoes.
Resumo:
We report 48 analyses of rare-earth elements (REE) and 15 143Nd/144Nd and 87Sr/86Sr analyses for basalts from the eight holes drilled during Leg 82. Discrete and distinct REE patterns and 143Nd/144Nd ratios characterize the eight holes, with little variation observed downhole except in Holes 561 and 558, thus suggesting dominantly long-term temporal and large-scale spatial variations in the mantle source of these basalts beneath the Mid-Atlantic Ridge over the last 35 Ma of its spreading activity. There is a good inverse correlation between 143Nd/144Nd and (La/Sm)EF with one exception in Hole 558 (approximately 35 Ma), the latter suggesting a recent (35 Ma) light REE depletion event, perhaps caused by dynamic or fractional melting. Short-term temporal and small-scale spatial mantle source variability is also evident in Hole 561 (approximately 18 Ma), which has rapid fluctuations in REE patterns and 143Nd/144Nd ratios (suggesting rapid transfer of magma from the time of melting) and is evidence contrary to the presence of a well-mixed magma chamber at this particular site and time. The mantle source variations noted can be interpreted within two extreme models. The first model invokes a convecting mantle depleted in large ion lithophile elements (LILE) and containing lumps (or veins) of LILE-enriched material of various shapes and sizes, passively and randomly distributed throughout. A second more restrictive model considers the interaction of fixed mantle plumes and the LILE-depleted asthenosphere flowing towards a migrating Mid- Atlantic Ridge (MAR) axis. With the exception of Hole 558 and the uncertainties of reconstructions of absolute plate movements in the region, the observed variations can be explained by two hot spots; the nearly ridge-centered Azores hot spot (plume) and another hot spot located beneath the African plate that may be affecting the source of basalts currently erupting at the MAR axis at 35°N and which, in the past, would have produced the New England chain of seamounts on the North American plate and (later) the Atlantis-Great Meteor chain on the African plate. Basalts erupted south of the Hayes Fracture Zone have not been affected by either of these two hot spots over the last 35 Ma and appear to have been continuously derived from the LILE-depleted source. Subaxial flow downridge from the Azores plume appears to have started 9 Ma, on the basis of the southward converging V-shaped time-transgressive ridges branching from the Pico and Corves Island, or not earlier than 16 Ma, on the basis of the geochemical results. Variations within Hole 558 remains unexplained by the latter model, unless we hypothesize a third hot spot.
(Table 4) Rare earth element abundances of representative Ferrar samples from Northern Victoria Land
Resumo:
We provide the first exploration of thallium (Tl) abundances and stable isotope compositions as potential tracers during arc lava genesis. We present a case study of lavas from the Central Island Province (CIP) of the Mariana arc, supplemented by representative sedimentary and altered oceanic crust (AOC) inputs from ODP Leg 129 Hole 801 outboard of the Mariana trench. Given the large Tl concentration contrast between the mantle and subduction inputs coupled with previously published distinctive Tl isotope signatures of sediment and AOC, the Tl isotope system has great potential to distinguish different inputs to arc lavas. Furthermore, CIP lavas have well-established inter island variability, providing excellent context for the examination of Tl as a new stable isotope tracer. In contrast to previous work (Nielsen et al., 2006b), we do not observe Tl enrichment or light epsilon 205Tl (where epsilon 205Tl is the deviation in parts per 10,000 of a sample 205Tl/203Tl ratio compared to NIST SRM 997 Tl standard) in the Jurassic-aged altered mafic ocean crust subducting outboard of the Marianas (epsilon 205Tl = - 4.4 to 0). The lack of a distinctive epsilon 205Tl signature may be related to secular changes in ocean chemistry. Sediments representative of the major lithologies from ODP Hole Leg 129 801 have 1-2 orders of magnitude of Tl enrichment compared to the CIP lavas, but do not record heavy signatures (epsilon 205Tl = - 3.0 to + 0.4), as previously found in similar sediment types (epsilon 205Tl > + 2.5; Rehkämper et al., 2004). We find a restricted range of epsilon 205Tl = - 1.8 to - 0.4 in CIP lavas, which overlaps with MORB. One lava from Guguan falls outside this range with epsilon 205Tl = + 1.2. Coupled Cs, Tl and Pb systematics of Guguan lavas suggests that this heavy Tl isotope composition may be due to preferential degassing of isotopically light Tl. In general, the low Tl concentrations and limited isotopic range in the CIP lavas is likely due to the unexpectedly narrow range of epsilon 205Tl found in Mariana subduction inputs, coupled with volcaniclastic, rather than pelagic sediment as the dominant source of Tl. Much work remains to better understand the controls on Tl processing through a subduction zone. For example, Tl could be retained in residual phengite, offering the potential exploration of Cs/Tl ratios as a slab thermometer. However, data for Tl partitioning in phengite (and other micas) is required before developing this application further. Establishing a database of Tl concentrations and stable isotopes in subduction zone lavas with different thermal parameters and sedimentary inputs is required for the future use of Tl as a subduction zone tracer.
Resumo:
A controversy currently exists regarding the number of Toba eruptive events represented in the tephra occurrences across peninsular India. Some claim the presence of a single bed, the 75,000-yr-old Toba tephra; others argue that dating and archaeological evidence suggest the presence of earlier Toba tephra. Resolution of this issue was sought through detailed geochemical analyses of a comprehensive suite of samples, allowing comparison of the Indian samples to those from the Toba caldera in northern Sumatra, Malaysia, and, importantly, the sedimentary core at ODP Site 758 in the Indian Ocean - a core that contains several of the earlier Toba tephra beds. In addition, two samples of Toba tephra from western India were dated by the fission-track method. The results unequivocally demonstrate that all the presently known Toba tephra occurrences in peninsular India belong to the 75,000 yr B.P. Toba eruption. Hence, this tephra bed can be used as an effective tool in the correlation and dating of late Quaternary sedimentary sequences across India and it can no longer be used in support of a middle Pleistocene age for associated Acheulian artifacts.
Resumo:
The monogragh contains results of mineralogicai and geochemical studies of Mesozoic and Cenozoic deposits from the Pacific Ocean collected during Deep Sea Drilling Project. Special attention is paid on the aspects of geochemical history of post-Jurassic sedimentation in the central part of the Northwest Pacific, detailed characteristics of the main stages of sedimentary evolution are given: Early Cretaceons (protooceanic), Late Cretaceons (transitional) and Cenozoic (oceanic). Results of mineralogical and geochemical studies of hydrothermal deposits from the Galapagos Rift are given as well.
Resumo:
The major-element and most of the trace-element data from the different laboratories that contributed to the study of samples recovered during Leg 82 are presented in the following tables. The different basalt groups, identified on the basis of their chemical properties (major and trace elements), were defined from the data available on board the Glomar Challenger as the cruise progressed (see site chapters, all sites, this volume). Most of the data obtained since the end of the cruise and presented in these tables confirm the classification that was proposed by the shipboard party (see site chapters, all sites, this volume). Nevertheless, special mention should be made about Site 564. The shipboard party proposed a single chemical group at this site but noticed significant variations down the hole, mainly in trace-element data. However, the range of variation was small compared to the precision of the measurements. These variations were confirmed by the onshore studies (see papers in Part IV of this volume, especially Brannon's paper, partly devoted to this topic).
Resumo:
Comprehensive investigations revealed that modern deposits in the northern Caspian Sea involve terrigenous sands and aleurites with admixture of detritus and intact bivalve shells, including coquina. Generally, these deposits overlay dark grayish viscous clays. Similar geological situation occurs in the Volga River delta; however, local deposits are much poorer in biogenic constituents. Illite prevails among clay minerals. In coarse aleurite fraction (0.100-0.050 mm) heavy transparent minerals are represented mostly by epidotes, while light minerals - mostly by quartz and feldspars. Sedimentary material in the Volga River delta is far from completely differentiated into fractions due to abundant terrigenous inflows. Comparatively better grading of sediments from the northern Caspian Sea is due to additional factors such as bottom currents and storms. When passing from the Volga River delta to the northern Caspian Sea, sediments are enriched in rare earth elements (except Eu), Ca, Au, Ni, Se, Ag, As, and Sr, but depleted in Na, Rb, Cs, K, Ba, Fe, Cr, Co, Sc, Br, Zr, ??, U, and Th. Concentrations of Zn remain almost unchanged. Sedimentation rates and types of recent deposits in the northern Caspian Sea are governed mainly by abundant runoff of the Volga River.