971 resultados para Sussex County (N.J.)--Maps, Outline and base.
Resumo:
Latin passion plays and saint plays.--Miracle plays; description, enumeration, dramatic values.--Moralities.--Appendix: topical outline and references.
Resumo:
Latin passion plays and saint plays.--Miracle plays; description, enumeration, dramatic values.--Moralities.--Appendix: topical outline and references.
Resumo:
Mode of access: Internet.
Resumo:
view of free tourist park
Resumo:
Guidebook to the Tenderloin District of New Orleans (Storyville, Anderson County); lists of establishments, proprietors and employees.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Background: To investigate vergence adaptation during the incipient phase of presbyopia, when the amplitude of accommodation approaches the level where the first reading addition is required. The study aimed to assess the ability of the vergence system to counteract changes in the component contributions to the overall vergence response with the decline in the amplitude of accommodation in presbyopia, although previous reports on the nature of changes in accommodative, tonic and proximal vergence are equivocal. Methods: Using a 'flashed' Maddox rod technique, an assessment of vergence adaptation to 6 Δ base-out and 6Δ base-in prism was made for 28 subjects (aged 35-45 years at the commencement of the study). The measurements were taken four times over a 2-year period. Results: Using a repeated measures analysis of variance, the results show that with the decline in amplitude of accommodation, there is a statistically significant reduction in the magnitude of vergence adaptation to both base-out (p < 0.05) and base-in prism (p < 0.01). Conclusions: This study shows that with ageing, there is a decrease in the ability of the slow vergence mechanism to overcome a change in fusional vergence demand and would suggest that either the fast component of fusional vergence must cope with any change in fusional vergence demand or that the sum of the accommodative, tonic and proximal vergence responses are virtually stable with age. © 2003 The College of Optometrists.
Resumo:
Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: - Greater emphasis on molecular biology and intracellular mechanisms - New chapter on genomics and sensory systems - Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain - Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology.
Resumo:
The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the "re-calibration" of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors' spatial representations and creates a "Shared Action Space" (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. © 2013 Pezzulo, Iodice, Ferraina and Kessler.
Resumo:
Purpose: The purpose of this study was to determine whether stereoacuity can be used as an indicator of prism adaptation. In particular, we wanted to know whether the time required for stereoacuity to return to the initial level after viewing through a prism can be used to determine the degree of adaptation. Materials and Methods: Eighteen subjects participated in this study. Stereoacuity and dissociated phoria were determined using the TNO stereotest and the Maddox rod, respectively. Prism vergences were measured using a prism bar. For each participant, prism power equivalent to the blur point of base-in (BI) and base-out (BO) fusional vergence at 40 cm was divided and placed in front of both eyes. At 0, 3, 6, 9 and 12 min after prism introduction, the stereoacuity was measured, and at 0 and 12 min, the heterophoria was measured. Results: The repeated measures ANOVA showed a significant difference between the mean stereoacuity for BI and BO prisms at the different measurement times (p < 0.05). For BO prism, the initial value was different between 0 and 3 min after the prism introduction, whereas for BI prism, a difference in stereoacuity was found between the pre-prism value and the value at 0, 3 and 6 min. The size of the heterophoria with BO and BI prisms was different from 0 to 12 min (p < 0.05). Conclusion: The time required for stereoacuity to return to baseline level was more than 3 min for BO, and more than 6 min for BI prism. In addition, the time required to return to baseline values was not similar for the stereoacuity and heterophoria. The recovery of stereoacuity is slower when adapting to divergence, as when looking from near to far. This implies that stereopsis responds faster to near targets than to distant one, and may precede complete phoria adaptation. © 2014 Informa Healthcare USA, Inc. All rights reserved: reproduction in whole or part not permitted.
Resumo:
The quest for energy security and widespread acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from combusting fossil derived carbon sources, is driving academic and commercial research into new routes to sustainable fuels to meet the demands of a rapidly rising global population. Biodiesel is one of the most readily implemented and low cost, alternative source of transportation fuels to meet future societal demands. However, current practises to produce biodiesel via transesterification employing homogeneous acids and bases result in costly fuel purification processes and undesired pollution. Life-cycle calculations on biodiesel synthesis from soybean feedstock show that the single most energy intensive step is the catalytic conversion of TAGs into biodiesel, accounting for 87% of the total primary energy input, which largely arises from the quench and separation steps. The development of solid acid and base catalysts that respectively remove undesired free fatty acid (FFA) impurities, and transform naturally occurring triglycerides found within plant oils into clean biodiesel would be desirable to improve process efficiency. However, the microporous nature of many conventional catalysts limits their ability to convert bulky and viscous feeds typical of plant or algal oils. Here we describe how improved catalyst performance, and overall process efficiency can result from a combination of new synthetic materials based upon templated solid acids and bases with hierarchical structures, tailored surface properties and use of intensified process allowing continuous operation.
Resumo:
Dwindling oil reserves and growing concerns over carbon dioxide emissions and associated climate change are driving the utilisation of renewable feedstocks as alternative, sustainable fuel sources. Catalysis has a rich history of facilitating energy efficient, selective molecular transformations, and contributes to 90% of current chemical manufacturing processes. In a post-petroleum era, catalysis will be pivotal in overcoming the scientific and engineering barriers to economically feasible bio-fuels. This perspective highlights some recent developments in heterogeneous catalysts for the synthesis of biodiesel from renewable resources, derived from plant and aquatic oil sources. Particular attention will be paid to the importance of catalyst pore architecture, surface polarity and acid and base properties, in meeting the challenge of transforming highly polar and viscous bio-based reactants. © 2012 The Royal Society of Chemistry.
Resumo:
Concerns over dwindling oil reserves, carbon dioxide emissions from fossil fuel sources and associated climate change is driving the urgent need for clean, renewable energy supplies. The conversion of triglycerides to biodiesel via catalytic transesterification remains an energetically efficient and attractive means to generate transportation fuel1. However, current biodiesel manufacturing routes employing soluble alkali based catalysts are very energy inefficient producing copious amounts of contaminated water waste during fuel purification. Technical advances in catalyst and reactor design and introduction of non-food based feedstocks are thus required to ensure that biodiesel remains a key player in the renewable energy sector for the 21st century. This presentation will give an overview of some recent developments in the design of solid acid and base catalysts for biodiesel synthesis. A particular focus will be on the benefits of designing materials with interconnected hierarchical macro-mesoporous networks to enhance mass-transport of viscous plant oils during reaction.