928 resultados para Suppressor of cytokine signaling proteins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hair follicles are spaced apart from one another at regular intervals through the skin. Although follicles are predominantly epidermal structures, classical tissue recombination experiments indicated that the underlying dermis defines their location during development. Although many molecules involved in hair follicle formation have been identified, the molecular interactions that determine the emergent property of pattern formation have remained elusive. We have used embryonic skin cultures to dissect signaling responses and patterning outcomes as the skin spatially organizes itself. We find that ectodysplasin receptor (Edar)-bone morphogenetic protein (BMP) signaling and transcriptional interactions are central to generation of the primary hair follicle pattern, with restriction of responsiveness, rather than localization of an inducing ligand, being the key driver in this process. The crux of this patterning mechanism is rapid Edar-positive feedback in the epidermis coupled with induction of dermal BMP4/7. The BMPs in turn repress epidermal Edar and hence follicle fate. Edar activation also induces connective tissue growth factor, an inhibitor of BMP signaling, allowing BMP action only at a distance from their site of synthesis. Consistent with this model, transgenic hyperactivation of Edar signaling leads to widespread overproduction of hair follicles. This Edar-BMP activation-inhibition mechanism appears to operate alongside a labile prepattern, suggesting that Edar-mediated stabilization of beta-catenin active foci is a key event in determining definitive follicle locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women, 23% (1.3 million) of the total of new cases and the second leading cause of cancer death in women exceeded only by lung cancer. Natural medicines have been proven to be a central source of narrative agents with a pharmaceutical potential. Costunolide is sesquiterpene lactones consisting of diverse plant chemicals that exhibit anti cancer action through cytotoxic effects on various cancer cells. The objectives of present study were to explore the effects of natural compounds on the proliferation of MCF-7 cells and to determine the role of ROS in natural compounds-induced apoptosis in breast cancer cells with a therapeutic potential. Results showed that costunolide screened, possess potent anticancer properties against breast cancer MCF-7 cells, Costunolide was observed as strong anti-proliferative agent with IC50 = 50µM. The anti-proliferative effect of costunolide on MCF cells was confirmed by live/dead assay using fluorescent probes calcein AV/PI. The results demonstrated that treatment of cells with costunolide decreased the viability of MCF-7 cells in a dose-dependent manner. To determine the costunolide-induced apoptosis, flow cytometric analysis was carried out. The results showed that costunolide induced apoptosis in a dose-dependent manner in breast cancer MCF-7cells. ROS are well known mediators of intracellular signaling of cascades. The excessive generation of ROS can induce oxidative stress, loss of cell functioning, and apoptosis. In the present study, we assumed that costunolide might arouse ROS level, which could be involved in induction of apoptosis. Therefore, the intracellular ROS level was measured using the ROS-detecting fluorescence dye 2, 7-dichlorofluorescein diacetate (DCF-DA). Interestingly these effects were significantly abrogated when the cells were pretreated with N-acetyl- cysteine (NAC), a specific ROS inhibitor. Costunolide induces apoptosis through extrinsic pathway in MCF-7 breast cancer cells, In order to examine whether costunolide suppresses cell growth inducing apoptotic cell death, we analyzed DNA contents and apoptosis-related proteins expression level by flow cytometry and western blot, respectively in MCF-7 breast cancer cells we investigated whether costunolide activates extrinsic apoptotic pathway. We examined the expression levels of death receptor signaling-related proteins, caspase-3, and PARP. The results showed that procaspase-3 was cleaved to yield 17 and 20kDa fragments and activation of PARP in treated cells with 25 and 50μM of costunolide. Costunolide induce apoptosis through intrinsic mitochondria pathway in MCF-7 breast cancer Cells. We examined the expression levels of mitochondrial apoptotic pathway related proteins such as anti-apoptotic protein, B-cell lymphoma protein-2 (Bcl2), and pro-apoptotic protein Bax. Costunolide involved in the down regulation of Bcl-2 and up regulation of Bax. These results suggest that costunolide may have beneficial effects for the reduction of breast cancer growth, and new therapeutic strategy for the treatment of human cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge about signaling in arbuscular mycorrhizal (AM) symbioses is currently restricted to the common symbiosis (SYM) signaling pathway discovered in legumes. This pathway includes calcium as a second messenger and regulates both AM and rhizobial symbioses. Both monocotyledons and dicotyledons form symbiotic associations with AM fungi, and although they differ markedly in the organization of their root systems, the morphology of colonization is similar. To identify and dissect AM-specific signaling in rice (Oryza sativa), we developed molecular phenotyping tools based on gene expression patterns that monitor various steps of AM colonization. These tools were used to distinguish common SYM-dependent and -independent signaling by examining rice mutants of selected putative legume signaling orthologs predicted to be perturbed both upstream (CASTOR and POLLUX) and downstream (CCAMK and CYCLOPS) of the central, calcium-spiking signal. All four mutants displayed impaired AM interactions and altered AM-specific gene expression patterns, therefore demonstrating functional conservation of SYM signaling between distant plant species. In addition, differential gene expression patterns in the mutants provided evidence for AM-specific but SYM-independent signaling in rice and furthermore for unexpected deviations from the SYM pathway downstream of calcium spiking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARYInsulin secretion from pancreatic beta-cells is a fundamental condition for the maintenance of blood glucose levels. During the last decades, important components of the molecular machinery controlling hormone release have been characterized. My PhD thesis was dedicated to the study of new signaling pathways regulating insulin exocytosis and in particular to the role of small monomelic guanine triphosphatase or GTPases controlling the last events of hormone release.The first part of my thesis focused on Ras-like (Ral) RalA and RalB proteins. We investigated the mechanisms leading to activation of Ral proteins in pancreatic beta-cells and analyzed their impact on different steps of the insulin-secretory process. Our results have shown that RalA is the predominant isoform expressed in pancreatic islets and insulin-secreting cell lines. Silencing of this GTPase in INS-IE cells by RNA interference led to a decrease in secretagogue-induced hormone release. The activation of the GTPase, followed by FRET imaging, is triggered by increases in intracellular Ca and cAMP. Defective insulin release in cells lacking RalA is associated with a decrease in the secretory granules docked at the plasma membrane, detected by TIRF microscopy and with strong impairment in PLD1 activation in response to secretagogues. RalA was found to be activated by the exchange factor RalGDS, which regulates hormone secretion induced by secretagogues and the docking step of insulin-containing granules at the plasma membrane. In the second part of this work we have shown that a member of the Rab family, Rab37, is present on insulin-containing secretory granules of pancreatic beta-cells. In addition, our experiments have suggested that Rab37 is required to obtain an optimal insulin secretory response induced by secretogogues and is important for the docking step of insulin-containing granules at the plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a retinal degenerative disease characterized by the progressive loss of photoreceptors. We have previously demonstrated that RP can be caused by recessive mutations in the human FAM161A gene, encoding a protein with unknown function that contains a conserved region shared only with a distant paralog, FAM161B. In this study, we show that FAM161A localizes at the base of the photoreceptor connecting cilium in human, mouse and rat. Furthermore, it is also present at the ciliary basal body in ciliated mammalian cells, both in native conditions and upon the expression of recombinant tagged proteins. Yeast two-hybrid analysis of binary interactions between FAM161A and an array of ciliary and ciliopathy-associated proteins reveals direct interaction with lebercilin, CEP290, OFD1 and SDCCAG8, all involved in hereditary retinal degeneration. These interactions are mediated by the C-terminal moiety of FAM161A, as demonstrated by pull-down experiments in cultured cell lines and in bovine retinal extracts. As other ciliary proteins, FAM161A can also interact with the microtubules and organize itself into microtubule-dependent intracellular networks. Moreover, small interfering RNA-mediated depletion of FAM161A transcripts in cultured cells causes the reduction in assembled primary cilia. Taken together, these data indicate that FAM161A-associated RP can be considered as a novel retinal ciliopathy and that its molecular pathogenesis may be related to other ciliopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : During vertebrate embryonic development, the endoderm gives rise to the digestive tract and associated organs such as thyroid, lung, liver and pancreas. Earlier studies have shown that extracellular signals coming from the lateral plate mesoderm pattern the endoderm along the antero-posterior axis specifying different organ primordia. An early sign of patterning is the expression of organ-specific genes in restricted endoderm domains. In this study, we focused on the role of the retinoic acid (RA) signaling pathway in the regionalization of the future gut tube along the main body axis. We show that the RA-synthesizing enzyme Raldh2 is expressed in mesoderm close to the endoderm during gastrulation and during somitogenesis. During the same period, all retinoic acid receptors (RARs), which directly activate gene transcription, are expressed in endoderm suggesting that endoderm can be responsive to RA. Activation or inhibition of RA signaling was achieved by adding RA or RAR inhibitors tither on beads or in the medium to cultured chick embryos. Branchial arch (BA) endoderm markers were shifted posteriorly upon depletion of RA at gastrulation, but were not shifted after this stage. Conversely, exposure to exogenous RA repressed the most-anterior BA markers and shifted more posterior BA markers anteriorly. This suggests that graded levels of RA activity in the foregut define gene boundaries and expression levels. The posterior foregut and midget markers Pdxl and CdxA require RA for their expression, but elevated RA does not shift their expression domain along the antero-posterior axis. In addition, we investigated if RA signaling pathway interacts with other signaling pathways to pattern the endoderm. Although both RA and FGFs block anterior foregut marker expression, our experiments suggest that FGF signaling does not depend on RA in anterior endoderm. To validate our chick data in mammalians and evaluate whether RA acts directly on endoderm, we have further generated a conditional loss-of-function system in the mouse, which is still under examination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé : Le Large tumor suppressor, Lats2, est une protéine humaine homologue au suppresseur de tumeur Warts (Lats) de Drosophila melanogaster, qui réprime la prolifération des cellules en altérant leur cycle au niveau des transitions Gl/S et G2/M, et en induisant l'apoptose. Pourtant, la voie moléculaire par laquelle Lats2, une sériase-thréonine kinase, déclenche l'arrêt du cycle cellulaire, est toujours inconnue. Notre équipe a d'abord déterminé que Lats2 était un gène de réponse à la protéine p53 (Kostic et al., 2000). Par la suite, nous avons identifié des protéines interagissant avec Lats2, notamment les modules de reconnaissance du substrat des ligases Colline E3 (des protéines contenant Socs box ou F box) ainsi que deux Bous-unités du Signalosome CSN: CSN4 et CSNS. En outre, Lats2 est connue pour s'associer au Super-complexe composé de CSN et des ligases Colline E3 (Rongere, thesis, 2004; Rongere, unpublished results, 2005). Le travail présenté ici sur Lats2 a confirmé que cette protéine est une kinase associée à CSN. Nous avons caractérisé les interactions spécifiques de domaines de Lats2 avec hSocs3, hWsb 1 (des protéines Socs box) et hFBX-7 (une protéine F box), ainsi que les conséquences physiologiques des interactions avec hSocs3, hWsb1 et hSocs1. Des expériences de GST pull-down ont montré que les deux domaines, N-terminal et kinase, de Lats2 interagissent avec hSocs3, hWsb1 et hFBX-7, ce qui suggère aussi que l'ensemble de la protéine Lats2 est impliqué dans ces interactions. Une étude approfondie des interactions entre Lats2 et hSocs3 indique que le domaine kinase de Lats2 interagit avec la région de hSocs3 contenant un domaine SH2, situé en amont du domaine Socs box de hSocs3. Par ailleurs, Lats2 phosphoryle des régions spécifiques entre les domaines N-terminal et SH2 (Sl), et, entre les domaines SH2 et Socs box (S3) de la protéine hSocs3. Ces résultats révèlent que hSocs3 est un.nouveau substrat de Lats2. Des modifications de l'activité kinase ont aussi révélé que la protéine sauvage Lats2 (wt Lats2) était capable de phosphoryler hSocs3, alors qu'un mutant dead du domaine kinase Lats (poche ATP délétée, Lats2OATP) non. L'analyse des mutations a permis d'identifier deux résidus sériase situés aux positions 1441145 (S3), spécifiquement phosphorylés par wt Lats2. La phosphorylation des protéines représentant un signal de dégradation protéolytique, nous avons envisagé que Lats2 pouvait cibler hSocs3 pour une dégradation protéasomale. Lorsque wt Lats2 est surexprimée dans des cellules HEK293T et COS7, la demi-vie de hSocs3, un élément de la ligase Elongine BC-Colline É3 (ligase EBC), diminue significativement, effet que n'a pas la surexpression de Lats2OATP. De plus, la stabilité de hSocs3 dépend de la phosphorylation des résidus sériase aux positions 144/145 par wt Lats2. Bien que les sites de phosphorylation ne soient pas définis pour les deux autres modules de reconnaissance du substrat de la ligase EBC: hWsb 1 et hSocsl, leurs demi-vies diminuent également quand wt Lats2 est surexprimée. Pour les tests in vivo, nous avons synthétisé des esiRNA pour diminuer l'expression du gène endogène lats2, ce qui a entraîné une augmentation d'un facteur 2 de la demi-vie de hSocs3 et de hWsbl dans les cellules HEK293T. En conclusion, nos résultats suggérent que Lats2, une kinase associée au CSN, est un nouveau régulateur de la fonction des ligases EBC, agissant sur le renouvellement des protéines hSocs3, hSocs1 et hWsb1. Ainsi, Lats2 altère la spécificité et la capacité des ligases EBC, régulant par là même la stabilité de nombreuses protéines, ciblées par les ligases EBC pour une dégradation protéasomale. D'autres études devraient révéler si la modification observée de la fonction de la ligase EBC par Lats2, associée au Super-complexe, est également responsable du renouvellement des régulateurs du cycle cellulaire et des changements dans ce même cycle observés lors de la surexpression de Lats2. Summary : The Large tumor suppressor 2 (Lats2) is a human homologue of the Drosophila melanogaster tumor suppressor Warts (Cats) who negatively regulates cell proliferation by altering cell cycle Gl/S and G2/M transition and inducing apoptosis. However, the molecular pathway by which Lats2, a serine-threonine kinase, mediates cell cycle arrest is still unknown. Lats2 was initially identified to be a p53 response gene by our group (Kostic et al., 2000). Subsequently, our group identified interacting candidates of Lats2, including substrate recognition modules of Cullin-based E3 ligases (Socs box or F-box containing proteins) as well as two subunits of the Signalosome (CSN), CSN4 and CSNS. Additionally, Lats2 was shown to associate with a Super-complex, composed of CSN and Cullin-based E3 ligases (Rongere, thesis, 2004; Rongere, unpublished results, 2005) We hypothesized that Lats2 may perform its physiological function through interaction with CSN and Cullin-based E3 ligases. The present work on Lats2 has confirmed that Lats2 is a CSN associated kinase. We defined the domain specific interactions of Lats2 with hSocs3, hWsb1 (Sots box proteins) and hFBX-7 (F box protein), as well as the physiological consequences of interaction with hSocs3, hWsb1 and hSocs1. Both the N-terminal and the kinase domains of Lats2 interact with full-length hSocs3, hWsb1 and hFBX-7, determined in GST pull-down assays suggesting that full-length Lats2 protein is involved in interactions. Refinement of the Lats2 interaction with hSocs3 indicated that the kinase domain of Lats2 interacts with a region of hSocs3 containing a SH2 domain located upstream of the Socs box domain of the hSocs3. Moreover, Lats2 phosphorylated specific regions between the N-terminal and SH2 domain (S l) as well as between the SH2 domain and Socs box domain of hSocs3 (S3).These results indicate that hSocs3 is a novel Lats2 substrate. The kinase assay has also demonstrated that wt Lats2 was able to phosphorylate hSocs3, but not Lats2 kinase dead mutant (deleted ATP pocket, Lats20ATP). Mutational analysis identified two serine residues located at positions 144/145 (S3) to be specifically phosphorylated by wt Lats2. Phosphorylation of proteins has been shown to be a signal for proteolytic degradation of many characterized proteins. Thus we hypothesized that Lats2 could target hSocs3 for proteasomal degradation. When wt Lats2 was over-expressed in HEK293T cells and COST cells, the half-life of hSocs3, as a component of Elongin BC Cullin-based E3 ubiquitin ligase (EBC ligase), decreased significantly. In contrast, aver-expression of the Lats2OATP did not alter the half-life of hSocs3. Furthermore, the stability of hSocs3 depended on phosphorylation of serine residues at positions 144/145 by wt Lats2. Although the sites of phosphorylation were not defined for two other substrate recognition modules of EBC ligasehWsbl and hSocsl, their half-lives also decreased when wt Lats2 was over-expressed. To test in vivo, we synthesized esiRNA to knock-down endogenous Lats2 and subsequently we measured the half-lives of hSocs3 and hVVsb l . Here we demonstrated that the half-lives of hSocs3 and hWsbl were increased by the factor of two in Lats2-depleted HEK293T cells. In conclusion, our findings suggest that Lats2, a CSN associated kinase, is a novel regulator of EBC ligase function by regulating the turn-over of hSocs3, hSocs1 and hWsb1. Thus, Lats2 alters the specificity and capacity of EBC ligases regulating thereby the stability of numerous proteins which are targeted by EBC ligases for proteasomal degradation. Further studies should reveal whether the observed modulation of EBC ligase function by Lats2 associated with a Super-complex is also responsible for the turn-over of cell cycle regulators and the observed alteration in cell cycle by Lats2 over-expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromatin remodeling at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by Kruppel-associated box (KRAB)-associated protein 1 (KAP1), the universal cofactor of KRAB-zinc finger proteins (ZFPs), a tetrapod-restricted family of transcriptional repressors. T-cell-specific Kap1-deleted mice displayed a significant expansion of immature thymocytes, imbalances in CD4(+)/CD8(+) cell ratios, and altered responses to TCR and TGFβ stimulation when compared to littermate KAP1 control mice. Transcriptome and chromatin studies revealed that KAP1 binds T-cell-specific cis-acting regulatory elements marked by the H3K9me3 repressive mark and enriched in Ikaros/NuRD complexes. Also, KAP1 directly controls the expression of several genes involved in TCR and cytokine signaling. Among these, regulation of FoxO1 seems to play a major role in this system. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB-ZFPs are selectively expressed in T-lymphoid cells. These results reveal the so far unsuspected yet important role of KAP1-mediated epigenetic regulation in T-lymphocyte differentiation and activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldosterone stimulation of the mineralocorticoid receptor (MR) is involved in numerous physiological responses, including Na+ homeostasis, blood pressure control, and heart failure. Aldosterone binding to MR promotes different post-translational modifications that regulate MR nuclear translocation, gene expression, and finally receptor degradation. Here, we show that aldosterone stimulates rapid phosphorylation of MR via ERK1/2 in a dose-dependent manner (from 0.1 to 10 nM) in renal epithelial cells. This phosphorylation induces an increase of MR apparent molecular weight, with a maximal upward shift of 30 kDa. Strikingly, these modifications are critical for the regulation of the MR ubiquitylation state. Indeed, we find that MR is monoubiquitylated in its basal state, and this status is sustained by the tumor suppressor gene 101 (Tsg101). Phosphorylation leads to disruption of MR/Tsg101 association and monoubiquitin removal. These events prompt polyubiquitin-dependent destabilization of MR and degradation. Preventing MR phosphorylation by ERK1/2 inhibition or mutation of target serines affects the sequential mechanisms of MR ubiquitylation and inhibits the aldosterone-mediated degradation. Our data provide a novel model of negative feedback of aldosterone signaling, involving sequential phosphorylation, monoubiquitin removal and subsequent polyubiquitylation/degradation of MR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The endoplasmic reticulum (ER) orchestrates the production of membrane-bound and secreted proteins. However, its capacity to process the synthesis and folding of protein is limited. Protein overload and the accumulation of misfolded proteins in the ER trigger an adaptive response known as the ER-stress response that is mediated by specific ER-anchored signaling pathways. This response regulates cell functions aimed at restoring cellular homeostasis or at promoting apoptosis of irreparably damaged cells. Activation or deregulation of ER-signaling pathways has been associated with various diseases including cancer. Here we discuss how tumors engage ER-signaling pathways to promote tumorigenesis and how manipulation of this process by anticancer drugs may contribute to cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent infection induces an adaptive immune response that is mediated by T and B lymphocytes. Upon triggering with an antigen, these cells become activated and turn into fast expanding cells able to efficiently defend the host. Lymphocyte activation is controlled by a complex composed of CARMA1, BCL10 and MALT1 which regulates the NF-KB signaling pathway upon antigen triggering. Abnormally high expression or activity of either one of these three proteins can favor the development of lymphomas, while genetic defects in the pathway are associated with immunodeficiency. MALT1 was identified as a paracaspase sharing homology with other cysteine proteases, namely caspases and metacaspases. In order to be active, caspases need to dimerize. Based on their sequence similarity with MALT1, we hypothesized that dimerization might also be a mechanism of activation employed by MALT1. To address this assumption, we performed a bioinformatics modelling based on the crystal structures of several caspases. Our model suggested that the MALT1 caspase-like domain can indeed form dimers. This finding was later confirmed by several published crystal structures of MALT1. In the dimer interface of our model, we noticed the presence of charged amino acids that could potentially form salt bridges and thereby hold both monomers together. Mutation of one of these residues, E549, into alanine completely blocked the catalytic activity of MALT1. Additionally, we provided evidence for a role of E549 in promoting the MALTl-dependent growth of cells derived from diffuse large B cell lymphoma (DLBCL) of the aggressive B cell-like type (ABC). To our initial surprise, the E549A mutation showed only a partial defect in dimerization, indicating that additional residues are essential to form a stable dimer. The MALT1 crystal structures revealed a key function for E549 in stabilizing the catalytic site of the protease via its interaction with an arginine which is located next to the catalytic active cysteine. In an additional study, we discovered that MALT1 monoubiquitination is required for the catalytic activity of the protease. Interestingly, we found that the MALT1 dimer interface mutant E549A could not be monoubiquitinated. Based on these findings, we suggest that correct formation of the dimer interface is a prerequisite for monoubiquitination. In a second project, we discovered a novel target of the protease MALT1, the ribonuclease Regnase¬la It was described that the RNase activity of Regnase-1 negatively regulates immune responses. We could show that in ABC DLBCL cell lines, Regnase-1 is not only cleaved by MALT1 but also phosphorylated, at least in part, by the inhibitor of KB kinase (IKK). Both regulations appear to restrain the RNase function of Regnase-1 and thereby allow the production of pro-survival proteins. In conclusion, our studies further highlight and explain the importance of the catalytic activity of MALT1 for the activation of lymphocytes and provide additional knowledge for the development of specific drugs targeting the catalytic activity of MALT1 for immunomodulation and treatment of lymphomas.  SUMMARY IN FRENCH PhD Thesis Katrin Cabalzar 2 SUMMARY IN FRENCH Une infection persistante induit une réponse immunitaire adaptative par l'intermédiaire des lymphocytes T et B. Quand elles reconnaissent l'antigène, ces cellules sont activées et se multiplient très rapidement pour défendre efficacement l'hôte. L'activation des lymphocytes est transmise par un complexe composé de trois protéines, CARMA1, BCL10 et MALT1, qui régule la voie de signalisation NF-KB lorsque l'antigène est reconnu. L'expression ou l'activité anormalement élevée de l'une de ces trois protéines peut favoriser le développement de lymphomes, tandis que des défauts génétiques de cette voie de signalisation sont associés à l'immunodéficience. MALT1 a été identifiée comme étant une paracaspase qui partage des séquences homologues avec d'autres protéases à cystéine, comme les caspases et les métacaspases. Pour être actives, les caspases ont besoin de dimériser. Etant donné leur similarité de séquence avec MALT1, nous avons supposé que la dimérisation pouvait aussi être un mécanisme d'activation utilisé par MALT1. Pour vérifier cette hypothèse, nous avons conçu un modèle bioinformatique à partir des structures cristallographiques de plusieurs caspases. Et notre modèle a suggéré que le domaine catalytique de MALT1 était effectivement capable de former des dimères. Cette découverte a été confirmée plus tard par des publications qui montrent des structures cristallographiques dimériques de MALT1. Dans l'interface du dimère de notre modèle, nous avons remarqué la présence d'acides aminés chargés qui pouvaient former des liaisons ioniques et ainsi réunir les deux monomères. La mutation de l'un de ces résidus, E549, pour une alanine, a complètement inhibé l'activité catalytique de MALT1. De plus, nous avons mis en évidence un rôle d'E549 dans la croissance dépendante de MALT1, des cellules dérivées de lymphomes B diffus à grandes cellules (DLBCL) de sous-type cellules B actives (ABC). Dans un premier temps nous avons été surpris de constater que cette mutation révélait seulement un défaut partiel de dimérisation, ce qui indique que des acides aminés supplémentaires sont indispensables pour former un dimère stable. Les structures cristallographiques de MALT1 ont révélé un rôle primordial d'E549 dans la stabilisation du site catalytique de la protéase via son interaction avec une arginine qui se trouve à côté de la cystéine du site actif. Dans une autre étude, nous avons découvert que la monoubiquitination de MALT1 est requise pour l'activité catalytique de la protéase. A remarquer que nous avons trouvé que le mutant E549A de l'interface dimère de MALT1 n'a pas pu être monoubiquitiné. Sur la base de ces résultats, nous suggérons que la formation correcte de l'interface du dimère est une condition préalable pour la monoubiquitination. Dans un second projet, nous avons découvert une nouvelle cible de la protéase MALT1, la ribonucléase Regnase-1. Il a été décrit que l'activité RNase de Regnase-1 régulait négativement les réponses immunitaires. Nous avons pu montrer que dans les lignées cellulaires ABC DLBCL, la Regnase-1 n'était pas seulement clivée par MALT1 mais également phosphorylée, au moins en partie, par la kinase de l'inhibiteur de KB (IKK). Les deux régulations semblent supprimer la fonction RNase de Regnase-1 et permettre ainsi la stabilisation de certains ARN messagers et la production de protéines favorisant la survie. En conclusion, nos études mettent en évidence le rôle-clé de la dimérisation de MALT1 et expliquent l'importance de l'activité catalytique de MALT1 pour l'activation des lymphocytes. Ainsi, nos résultats apportent des connaissances supplémentaires pour le développement de médicaments spécifiques ciblant l'activité catalytique de MALT1, qui pourraient être utiles pour modifier les réponses immunitaires et traiter des lymphomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family involved in signal transduction and the regulation of cellular proliferation and differentiation. It is also a calmodulin-binding protein. To examine the role of calmodulin in the regulation of EGFR, the effect of calmodulin antagonist, W-13, on the intracellular trafficking of EGFR and the MAPK signaling pathway was analyzed. W-13 did not alter the internalization of EGFR but inhibited its recycling and degradation, thus causing the accumulation of EGF and EGFR in enlarged early endosomal structures. In addition, we demonstrated that W-13 stimulated the tyrosine phosphorylation of EGFR and consequent recruitment of Shc adaptor protein with EGFR, presumably through inhibition of the calmodulin-dependent protein kinase II (CaM kinase II). W-13¿mediated EGFR phosphorylation was blocked by metalloprotease inhibitor, BB94, indicating a possible involvement of shedding in this process. However, MAPK activity was decreased by W-13; dissection of this signaling pathway showed that W-13 specifically interferes with Raf-1 activity. These data are consistent with the regulation of EGFR by calmodulin at several steps of the receptor signaling and trafficking pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth.