976 resultados para Sum of logistics
Resumo:
Purpose: The purpose of the research described in this paper is to disentangle the rhetoric from the reality in relation to supply chain management (SCM) adoption in practice. There is significant evidence of a divergence between theory and practice in the field of SCM. Research Approach: The authors’ review of the extant SCM literature highlighted a lack of replication studies in SCM, leading to the concept of refined replication being developed. The authors conducted a refined replication of the work of Sweeney et al. (2015) where a new SCM definitional construct – the Four Fundamentals – was proposed. The work presented in this article refines the previous study but adopts the same three-phase approach: focussed interviews, a questionnaire survey, and focus groups. This article covers the second phase of the refined replication study and describes an integrated research design of a questionnaire research to be undertaken in Britain. Findings and Originality: The article presents an integrated research design of a questionnaire research with emphases on the refined replication of previous work of Sweeney et al. (2015) carried out in Ireland and adapting it to the British context. Research Impact: The authors introduce the concept of refined replication in SCM research. This allows previous research to be built upon in order to test understanding of SCM theory and its practical implementation - based on the Four Fundamentals construct - among SCM professionals in Britain. Practical Impact: The article presents the integrated research design of a questionnaire research that may be used in similar studies.
Resumo:
An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.
Resumo:
This dissertation documents the results of a theoretical and numerical study of time dependent storage of energy by melting a phase change material. The heating is provided along invading lines, which change from single-line invasion to tree-shaped invasion. Chapter 2 identifies the special design feature of distributing energy storage in time-dependent fashion on a territory, when the energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The challenge in this chapter is to determine the architecture of distributed energy storage. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to ‘invade’ the area is cumulative (the sum of the storage times required at each storage site), and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Chapter 3 shows theoretically that the melting process consists of two phases: “invasion” thermal diffusion along the invading line, which is followed by “consolidation” as heat diffuses perpendicularly to the invading line. This chapter also reports the duration of both phases and the evolution of the melt layer around the invading line during the two-dimensional and three-dimensional invasion. It also shows that the amount of melted material increases in time according to a curve shaped as an S. These theoretical predictions are validated by means of numerical simulations in chapter 4. This chapter also shows that the heat transfer rate density increases (i.e., the S curve becomes steeper) as the complexity and number of degrees of freedom of the structure are increased, in accord with the constructal law. The optimal geometric features of the tree structure are detailed in this chapter. Chapter 5 documents a numerical study of time-dependent melting where the heat transfer is convection dominated, unlike in chapter 3 and 4 where the melting is ruled by pure conduction. In accord with constructal design, the search is for effective heat-flow architectures. The volume-constrained improvement of the designs for heat flow begins with assuming the simplest structure, where a single line serves as heat source. Next, the heat source is endowed with freedom to change its shape as it grows. The objective of the numerical simulations is to discover the geometric features that lead to the fastest melting process. The results show that the heat transfer rate density increases as the complexity and number of degrees of freedom of the structure are increased. Furthermore, the angles between heat invasion lines have a minor effect on the global performance compared to other degrees of freedom: number of branching levels, stem length, and branch lengths. The effect of natural convection in the melt zone is documented.
Resumo:
Reactive iron (oxyhydr)oxide minerals preferentially undergo early diagenetic redox cycling which can result in the production of dissolved Fe(II), adsorption of Fe(II) onto particle surfaces, and the formation of authigenic Fe minerals. The partitioning of iron in sediments has traditionally been studied by applying sequential extractions that target operationally-defined iron phases. Here, we complement an existing sequential leaching method by developing a sample processing protocol for d56Fe analysis, which we subsequently use to study Fe phase-specific fractionation related to dissimilatory iron reduction in a modern marine sediment. Carbonate-Fe was extracted by acetate, easily reducible oxides (e.g. ferrihydrite and lepidocrocite) by hydroxylamine-HCl, reducible oxides (e.g. goethite and hematite) by dithionite-citrate, and magnetite by ammonium oxalate. Subsequently, the samples were repeatedly oxidized, heated and purified via Fe precipitation and column chromatography. The method was applied to surface sediments collected from the North Sea, south of the Island of Helgoland. The acetate-soluble fraction (targeting siderite and ankerite) showed a pronounced downcore d56Fe trend. This iron pool was most depleted in 56Fe close to the sediment-water interface, similar to trends observed for pore-water Fe(II). We interpret this pool as surface-reduced Fe(II), rather than siderite or ankerite, that was open to electron and atom exchange with the oxide surface. Common extractions using 0.5 M HCl or Na-dithionite alone may not resolve such trends, as they dissolve iron from isotopically distinct pools leading to a mixed signal. Na-dithionite leaching alone, for example, targets the sum of reducible Fe oxides that potentially differ in their isotopic fingerprint. Hence, the development of a sequential extraction Fe isotope protocol provides a new opportunity for detailed study of the behavior of iron in a wide-range of environmental settings.
Resumo:
A radioisotope energy-dispersive X-ray (EDX) system has been used on board the German research vessel "Valdivia" during an exploration expedition in the northern equatorial Pacific in 1973. The instrumentation used consisted of an X-ray detection system incorporating a 30 mm2 effective-area Si (Li) detector with a measured energy resolution of 195 eV for Mn K alpha X-rays, standard nuclear electronics, a 1024-channel analyser and a data read-out unit. The X-ray spectra in the manganese-nodule samples were excited by a 30-mCi 238Pu source. The six elements Mn, Fe, Co, Ni, Cu and Zn were analysed on board. Precision values for the analyses were less than 3% for Mn, Fe, Ni, Cu and Zn and about 5% for Co. A total amount of 350 analyses was carried out during a one-month cruise. Average contents of 190 analysed whole manganese-nodule samples from all the sampling sites of the covered area were 23.3% Mn, 6.7% Fe, 0.23% Co, 1.16% Ni, 0.94% Cu and 0.10% Zn. The average content of the base metals expressed as the sum of the Co, Ni, Cu and Zn contents was 2.48%. A linear relationship between Mn and Ni in all analysed samples, including whole manganese-nodule samples, zones of manganese nodules and manganese crusts, was observed. The Mn/Ni ratio calculated by regression analysis was 23.0. Zonal variations of the chemical contents of the six elements in the manganese nodules were found. A size classification of the manganese nodules has been suggested. Geochemical correlations of Cu and Ni versus Mn/Fe in the investigated samples are given.
Resumo:
Cold seep environments such as sediments above outcropping hydrate at Hydrate Ridge (Cascadia margin off Oregon) are characterized by methane venting, high sulfide fluxes caused by the anaerobic oxidation of methane, and the presence of chemosynthetic communities. This investigation deals with the diversity and distribution of sulfate-reducing bacteria, some of which are directly involved in the anaerobic oxidation of methane as syntrophic partners of the methanotrophic archaea. The composition and activity of the microbial communities at methane vented and nonvented sediments are compared by quantitative methods including total cell counts, fluorescence in situ hybridization (FISH). Bacteria involved in the degradation of particulate organic carbon (POC) are as active and diverse as at other productive margin sites of similar water depths. The availability of methane supports a two orders of magnitude higher microbial biomass (up to 9.6×10**10cells/cm**3). Sediment samples were obtained during RV SONNE cruises SO143-2 and SO148-1 at the crest of southern Hydrate Ridge at the Cascadia convergent margin off the coast of Oregon. Sediment cores of 20 - 40 cm length were obtained using a video-guided multiple corer from gas hydrate bearing sediments and from reference sites not enriched in methane in the surface sediments. Samples for total cell counts were obtained from 1 cm core slices, fixed with 2% formaldehyde and stored cold (4°C) and the quantification of aggregates was done via epifluorescence microscopy after staining the sediments with Acridine Orange Direct Counts (AODC) according to the method of Meyer- Reil (1983, doi:10.1007/BF00395813). Total cell counts were defined as the sum of single cells plus the aggregated cells in the syntrophic consortia. DAPI staining was used to measure ANME2/DSS aggregate sizes via epifluorescence microscopy of FISH-treated samples. For FISH, subsamples of sediment cores were sliced into 1 cm intervals and fixed for 2-3 h with 3% formaldehyde (final concentration), washed twice with 1×PBS (10 mM sodium phosphate; 130 mM NaCl), and finally stored in 1×PBS/EtOH (1:1) at -20°C.
Resumo:
We determined phosphorus (P) concentrations in Leg 138 sediment samples from Sites 844, 846, and 851, using a sequential extraction technique to identify the P associated with five sedimentary components. Total concentrations of P (sum of the five components) ranged from 4 to 35 µmol P/g sediment, with mean values relatively similar between the three sites (11, 14, and 12 for Sites 844,846, and 851, respectively). Authigenic/biogenic P was the most important component in terms of percentage of total P (about 75%), with iron-bound P (13%), adsorbed P (2%-9%), and organic P (4%) of secondary importance; detrital P was a minor P sink (1%) in these sediments. Profiles of adsorbed P and iron-bound P show decreasing concentrations with age, indicating that these components have been affected by diagenesis and reorganization of P. A peak in iron-bound P may reflect higher fluxes of hydrothermally derived Fe to eastern equatorial Pacific Ocean sediments from 11 to 8 Ma. Lower detrital P values for western Site 851 reflect a greater distance of this site from a terrigenous source area, compared to that of Sites 844 and 846. Phosphorus mass accumulation rates (P-MARs; units of µmol P/cm**2/k.y.) were calculated using total P concentrations (not including the minor and oceanically unreactive detrital P component) and sedimentation rates and dry-bulk densities averaged over time intervals of 0.5 m.y. P-MARs generally decrease from 17 Ma to the present. Eastern transect Sites 844 and 846 display a decrease in P-MARs from about 30 to 10 in the interval from 17 to 8 Ma, while western transect Site 851 is highly variable during this interval. P-MARs increase to about 45 and stay relatively high from 8 to 6 Ma, then decrease toward the present to some of the lowest values of the record (about 10). The general trend of high P-MARs at about 6 Ma and decreasing values toward the present is correlated with other geochemical and sedimentary trends through this interval and may reflect (1) a change in net sediment and P burial, (2) a reorganization of fluxes with no change of net burial, or (3) a combination of the two.
Resumo:
Materials from different spheres of the Earth are ultimately delivered to bottom sediments, which serve as a natural recorder of the functioning of other spheres and originate as a result of the accumulation of their substances. Sedimentary material and species of river-transported elements are subjected to dramatic reworking in marginal filters, where river and sea waters are mixed. These processes are most important for the Caspian Sea, where runoffs of rivers (especially the Volga River) and the intense development and transportation of hydrocarbon fuel by tankers and pipelines (related to the coastal petroleum industry in the Sumgait and Baku ports, Apsheron Peninsula) are potential sources of hydrocarbon pollution. Previously obtained data showed that the total content of hydrocarbon fraction (i.e., the sum of aliphatic hydrocarbons (AHC) and polycyclic aromatic hydrocarbons (PAH)) in bottom sediments varied within 29-1820 µg/g. The content of petroleum hydrocarbons in the northeastern Caspian region varied from 0.052 to 34.09 µg/g with the maximum content in the Tengiz field. The content of six polyarenes in the Volga delta sediments was no more than 40 ng/g. To determine the recent HC pollution of bottom sediments and trends in the functioning of the Volga marginal filter, in summer of 2003 and 2004 we analyzed bottom sediments (58 samples) in the river waterway; Kirovsk channel; Bakhtemir and Ikryanoe branches; tributaries of the Kizan, Chagan, and other rivers; and the Caspian seashore.
Resumo:
This data set comprises time series of aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of several experiments at the field site of a large grassland biodiversity experiment (the Jena Experiment; see further details below). Aboveground community biomass was normally harvested twice a year just prior to mowing (during peak standing biomass twice a year, generally in May and August; in 2002 only once in September) on all experimental plots in the Jena Experiment. This was done by clipping the vegetation at 3 cm above ground in up to four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned by random selection of new coordinates every year within the core area of the plots. The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship. The following series of datasets are contained in this collection: 1. Plant biomass form the Main Experiment: In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). 2. Plant biomass from the Dominance Experiment: In the Dominance Experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). 3. Plant biomass from the monoculture plots: In the monoculture plots the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species like the other experiments in May 2002. All plots were maintained by bi-annual weeding and mowing.
Resumo:
In the context of the European OMEX Programme this investigation focused on gradients in the biomass and activity of the small benthic size spectrum along a transect across the Goban Spur from the outer Celtic Sea into Porcupine Abyssal Plain. The effects of food pulses (seasonal, episodic) on this part of the benthic size spectrum were investigated. Sediments sampled during eight expeditions at different seasons covering a range from 200 m to 4800 m water depth were assayed with biochemical bulk measurements: determinations of chloroplastic pigment equivalents (CPE), the sum of chlorophyll a and its breakdown products, provide information concerning the input of phytodetrital matter to the seafloor; phospholipids were analyzed to estimate the total biomass of small benthic organisms (including bacteria, fungi, flagellata, protozoa and small metazoan meiofauna). A new term 'small size class biomass' (SSCB) is introduced for the biomass of the smallest size classes of sediment-inhabiting organisms; the reduction of fluorescein-di-acetate (FDA) was determined to evaluate the potential activity of ester-cleaving bacterial exoenzymes in the sediment samples. At all stations benthic biomass was predominantly composed of the small size spectrum (90% on the shelf; 97-98% in the bathyal and abyssal parts of the transect). Small size class biomass (integrated over a 10 cm sediment column) ranged from 8 g C/m**2 on the shelf to 2.1 g C/m**2 on the adjacent Porcupine Abyssal Plain, exponentially decreasing with increasing water depth. However, a correlation between water depth and SSCB, macrofauna biomass as well as metazoan meiofauna biomass exhibited a significantly flatter slope for the small size classes in comparison to the larger organisms. CPE values indicated a pronounced seasonal cycle on the shelf and upper slope with twin peaks of phytodetrital deposition in mid spring and late summer. The deeper stations seem to receive a single annual flux maximum in late summer. SSCB and heterotrophic activity are significantly correlated to the amount of sediment-bound pigments. Seasonality in pigment concentrations is clearly followed by SSCB and activity. In contrast to macro- and megafauna which integrate over larger periods (months/years), the small benthic size classes, namely bacteria and foraminifera, proved to be the most reactive potential of the benthic communities to any perturbations on short time scales (days/weeks). The small size classes, therefore, occupy a key role in early diagenetic processes.
Resumo:
Two direct sampling correlator-type receivers for differential chaos shift keying (DCSK) communication systems under frequency non-selective fading channels are proposed. These receivers operate based on the same hardware platform with different architectures. In the first scheme, namely sum-delay-sum (SDS) receiver, the sum of all samples in a chip period is correlated with its delayed version. The correlation value obtained in each bit period is then compared with a fixed threshold to decide the binary value of recovered bit at the output. On the other hand, the second scheme, namely delay-sum-sum (DSS) receiver, calculates the correlation value of all samples with its delayed version in a chip period. The sum of correlation values in each bit period is then compared with the threshold to recover the data. The conventional DCSK transmitter, frequency non-selective Rayleigh fading channel, and two proposed receivers are mathematically modelled in discrete-time domain. The authors evaluated the bit error rate performance of the receivers by means of both theoretical analysis and numerical simulation. The performance comparison shows that the two proposed receivers can perform well under the studied channel, where the performances get better when the number of paths increases and the DSS receiver outperforms the SDS one.
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.
Resumo:
Purpose – In the field of humanitarianism, cluster thinking has been suggested as a solution to the lack of coordinated disaster response. Clusters for diverse functions, including sheltering, logistics and water and sanitation, can be viewed as an effort to achieve functional coordination. The purpose of this paper is to contribute to a greater understanding of the potential of cluster concepts using supply chain coordination and inter‐cluster coordination. The focus is on the conceptual level rather than on specific means of coordination. Design/methodology/approach – The cluster concept in humanitarian relief, along with some key empirical issues, is based on a case study. The concept is then compared to the literature on clusters and coordination in order to develop a theoretical framework with propositions on the tradeoffs between different types of coordination. Findings – The results provide important reflections on one of the major trends in contemporary development of humanitarian logistics. This paper shows that there is a tradeoff between different types of coordination, with horizontal coordination inside cluster drawing attention away from important issues of the supply chain as well as the need to coordinate among the clusters. Research limitations/implications – There is a need for more in‐depth case studies of experiences with clusters in various operations. Various perspectives should be taken into account, including the field, responding agencies, beneficiaries, donors, military and commercial service providers, both during and between disasters. Practical implications – The paper presents the tradeoffs between different types of coordination, in which basic aims such as standardisation through functional coordination, must be balanced with cross‐functional and vertical coordination in order to more successfully serve the users' composite needs. Originality/value – The focus on possible trade‐offs between different types of coordination is an important complement to the literature, which often assumes simultaneous high degrees of horizontal and vertical coordination.
Resumo:
Purpose: There is a need for theory development within the field of humanitarian logistics to understand logistics needs in different stages of a crisis and how to meet these. This paper aims to discuss three dimensions identified in logistics and organization theories and how they relate to three different cases of humanitarian logistics operations - the regional concept of the International Federation of Red Cross Red Crescent Societies, the development and working of the United Nations Joint Logistics Centre and coordination challenges of military logistics in UN mandated peacekeeping operations. The purpose is to build a framework to be used in further studies. Design/methodology/approach: A framework for the study of humanitarian logistics along three dimensions is developed, followed by a discussion of the chosen cases in relation to these dimensions. The framework will be used as basis for the case studies to be undertaken for the purpose of understanding and identification of new questions and needs for other or revised concepts from theory. Findings: The paper shows the relevance of a wide literature to the issues pertinent to humanitarian logistics. There is considerable promise in extant literature on logistics, SCM and coordination, but this needs to be confronted with the particular issues seen in the humanitarian logistics setting to achieve further theory development. Originality/value: The major contribution of the paper lies in its breadth of theoretical perspectives presented and combined in a preliminary theoretical framework. This is applied more specifically in the three case studies described in the paper.
Resumo:
Purpose: To describe orthoptic student satisfaction in a blended learning environment. Methods: Blended learning and teaching approaches that include a mix of sessions with elearning are being used since 2011/2012 involving final year (4th year) students from an orthoptic program. This approach is used in the module of research in orthoptics during the 1 semester. Students experienced different teaching approaches, which include seminars, tutorial group discussions and e-learning activities using the moodle platform. The Constructivist OnLine Learning Environment Survey (COLLES ) was applied at the end of the semester with 24 questions grouped in 6 dimensions with 4 items each: Relevance to professional practice, Reflection, Interactivity, Tutor support, Peer support and Interpretation. A 5-point Likert scale was used to score each individual item of the questionnaire (1 - almost never to 5 – almost always). The sum of items in each dimension ranged between 4 (negative perception) and 20 (positive perception). Results: Twenty-four students replied to the questionnaire. Positive points were related with Relevance (16.13±2.63), Reflection (16.46±2.45), Tutor support (16.29±2.10) and Interpretation (15.38±2.16). The majority of the students (n=18; 75%) think that the on-line learning is relevant to students’ professional practice. Critical reflections about learning contents were frequent (n=19; 79.17%). The tutor was able to stimulate critical thinking (n=21; 87.50%), encouraged students to participate (n=18; 75%) and understood well the student’s contributions (n=15; 62.50%). Less positive points were related with Interactivity (14.13±2.77) and Peer support (13.29±2.60). Response from the colleagues to ideas (n=11; 45.83%) and valorization of individual contributions (n=10; 41.67%) scored lower than other items. Conclusions: The flow back and forth between face-to-face and online learning situations helps the students to make critical reflections. The majority of the students are satisfied with a blended e-learning system environment. However, more work needs to be done to improve interactivity and peer support.