933 resultados para Sulphur amino acid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have cloned a cDNA and gene from the tobacco hornworm, Manduca sexta, which is related to the vertebrate cellular retinoic acid binding proteins (CRABPs). CRABPs are members of the superfamily of lipid binding proteins (LBPs) and are thought to mediate the effects of retinoic acid (RA) on morphogenesis, differentiation, and homeostasis. This discovery of a Manduca sexta CRABP (msCRABP) demonstrates the presence of a CRABP in invertebrates. Compared with bovine/murine CRABP I, the deduced amino acid sequence of msCRABP is 71% homologous overall and 88% homologous for the ligand binding pocket. The genomic organization of msCRABP is conserved with other CRABP family members and the larger LBP superfamily. Importantly, the promoter region contains a motif that resembles an RA response element characteristic of the promoter region of most CRABPs analyzed. Three-dimensional molecular modeling based on postulated structural homology with bovine/murine CRABP I shows msCRABP has a ligand binding pocket that can accommodate RA. The existence of an invertebrate CRABP has significant evolutionary implications, suggesting CRABPs appeared during the evolution of the LBP superfamily well before vertebrate/invertebrate divergence, instead of much later in evolution in selected vertebrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proteins can be very tolerant to amino acid substitution, even within their core. Understanding the factors responsible for this behavior is of critical importance for protein engineering and design. Mutations in proteins have been quantified in terms of the changes in stability they induce. For example, guest residues in specific secondary structures have been used as probes of conformational preferences of amino acids, yielding propensity scales. Predicting these amino acid propensities would be a good test of any new potential energy functions used to mimic protein stability. We have recently developed a protein design procedure that optimizes whole sequences for a given target conformation based on the knowledge of the template backbone and on a semiempirical potential energy function. This energy function is purely physical, including steric interactions based on a Lennard-Jones potential, electrostatics based on a Coulomb potential, and hydrophobicity in the form of an environment free energy based on accessible surface area and interatomic contact areas. Sequences designed by this procedure for 10 different proteins were analyzed to extract conformational preferences for amino acids. The resulting structure-based propensity scales show significant agreements with experimental propensity scale values, both for α-helices and β-sheets. These results indicate that amino acid conformational preferences are a natural consequence of the potential energy we use. This confirms the accuracy of our potential and indicates that such preferences should not be added as a design criterion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinoic acid receptors (RARs) are hormone-regulated transcription factors that control key aspects of normal differentiation. Aberrant RAR activity may be a causal factor in neoplasia. Human acute promyelocytic leukemia, for example, is tightly linked to chromosomal translocations that fuse novel amino acid sequences (denoted PML, PLZF, and NPM) to the DNA-binding and hormone-binding domains of RARα. The resulting chimeric receptors have unique transcriptional properties that may contribute to leukemogenesis. Normal RARs repress gene transcription by associating with ancillary factors denoted corepressors (also referred to as SMRT, N-CoR, TRAC, or RIP13). We report here that the PML-RARα and PLZF-RARα oncoproteins retain the ability of RARα to associate with corepressors, and that this corepressor association correlates with certain aspects of the leukemic phenotype. Unexpectedly, the PLZF moiety itself can interact with SMRT corepressor. This interaction with corepressor is mediated, in part, by a POZ motif within PLZF. Given the presence of POZ motifs in a number of known transcriptional repressors, similar interactions with SMRT may play a role in transcriptional silencing by a variety of both receptor and nonreceptor transcription factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two human cDNAs that encode novel vitamin K-dependent proteins have been cloned and sequenced. The predicted amino acid sequences suggest that both are single-pass transmembrane proteins with amino-terminal γ-carboxyglutamic acid-containing domains preceded by the typical propeptide sequences required for posttranslational γ-carboxylation of glutamic acid residues. The polypeptides, with deduced molecular masses of 23 and 17 kDa, are proline-rich within their putative cytoplasmic domains and contain several copies of the sequences PPXY and PXXP, motifs found in a variety of signaling and cytoskeletal proteins. Accordingly, these two proteins have been called proline-rich Gla proteins (PRGP1 and PRGP2). Unlike the γ-carboxyglutamic acid domain-containing proteins of the blood coagulation cascade, the two PRGPs are expressed in a variety of extrahepatic tissues, with PRGP1 and PRGP2 most abundantly expressed in the spinal cord and thyroid, respectively, among those tissues tested. Thus, these observations suggest a novel physiological role for these two new members of the vitamin K-dependent family of proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Benzodiazepines allosterically modulate γ-aminobutyric acid (GABA) evoked chloride currents of γ-aminobutyric acid type A (GABAA) receptors. Coexpression of either rat γ2 or γ3, in combination with α1 and β2 subunits, results both in receptors displaying high [3H]Ro 15-1788 affinity. However, receptors containing a γ3 subunit display a 178-fold reduced affinity to zolpidem as compared with γ2-containing receptors. Eight chimeras between γ2 and γ3 were constructed followed by nine different point mutations in γ2, each to the homologous amino acid residue found in γ3. Chimeric or mutant γ subunits were coexpressed with α1 and β2 in human embryonic kidney 293 cells to localize amino acid residues responsible for the reduced zolpidem affinity. Substitution of a methionine-to-leucine at position 130 of γ2 (γ2M130L) resulted in a 51-fold reduction in zolpidem affinity whereas the affinity to [3H]Ro 15-1788 remained unchanged. The affinity for diazepam was only decreased by about 2-fold. The same mutation resulted in a 9-fold increase in Cl 218872 affinity. A second mutation (γ2M57I) was found to reduce zolpidem affinity by about 4-fold. Wild-type and γ2M130L-containing receptors were functionally expressed in Xenopus oocytes. Upon mutation allosteric coupling between agonist and modulatory sites is preserved. Dose–response curves for zolpidem and for diazepam showed that the zolpidem but not the diazepam apparent affinity is drastically reduced. The apparent GABA affinity is not significantly affected by the γ2M130L mutation. The identified amino acid residues may define part of the benzodiazepine binding pocket of GABAA receptors. As the modulatory site in the GABAA receptor is homologous to the GABA site, and to all agonist sites of related receptors, γ2M130 may either point to a homologous region important for agonist binding in all receptors or define a new region not underlying this principle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In an effort to expand the scope of protein mutagenesis, we have completed the first steps toward a general method to allow the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the generation of an “orthogonal” suppressor tRNA that is uniquely acylated in Escherichia coli by an engineered aminoacyl-tRNA synthetase with the desired unnatural amino acid. To this end, eight mutations were introduced into tRNA2Gln based on an analysis of the x-ray crystal structure of the glutaminyl-tRNA aminoacyl synthetase (GlnRS)–tRNA2Gln complex and on previous biochemical data. The resulting tRNA satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase including GlnRS, and it functions efficiently in protein translation. Repeated rounds of DNA shuffling and oligonucleotide-directed mutagenesis followed by genetic selection resulted in mutant GlnRS enzymes that efficiently acylate the engineered tRNA with glutamine in vitro. The mutant GlnRS and engineered tRNA also constitute a functional synthetase–tRNA pair in vivo. The nature of the GlnRS mutations, which occur both at the protein–tRNA interface and at sites further away, is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The functions of neurotransmitters in fetal development are poorly understood. Genetic observations have suggested a role for the inhibitory amino acid neurotransmitter γ-aminobutyric acid (GABA) in the normal development of the mouse palate. Mice homozygous for mutations in the β-3 GABAA receptor subunit develop a cleft secondary palate. GABA, the ligand for this receptor, is synthesized by the enzyme glutamic acid decarboxylase. We have disrupted one of the two mouse Gad genes by gene targeting and also find defects in the formation of the palate. The striking similarity in phenotype between the receptor and ligand mutations clearly demonstrates a role for GABA signaling in normal palate development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The gene encoding 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO; EC 1.14.12.4) was cloned by using an oligonucleotide probe corresponding to the N terminus of the enzyme to screen a DNA library of Pseudomonas sp. MA-1. The gene encodes for a protein of 379 amino acid residues corresponding to a molecular mass of 41.7 kDa, the same as that previously estimated for MHPCO. MHPCO was expressed in Escherichia coli and found to have the same properties as the native enzyme from Pseudomonas sp. MA-1. This study shows that MHPCO is a homotetrameric protein with one flavin adenine dinucleotide bound per subunit. Sequence comparison of the enzyme with other hydroxylases reveals regions that are conserved among aromatic flavoprotein hydroxylases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acyl-acyl carrier protein (ACP) desaturases introduce double bonds at specific positions in fatty acids of defined chain lengths and are one of the major determinants of the monounsaturated fatty acid composition of vegetable oils. Mutagenesis studies were conducted to determine the structural basis for the substrate and double bond positional specificities displayed by acyl-ACP desaturases. By replacement of specific amino acid residues in a Δ6-palmitoyl (16:0)-ACP desaturase with their equivalents from a Δ9-stearoyl (18:0)-ACP desaturase, mutant enzymes were identified that have altered fatty acid chain-length specificities or that can insert double bonds into either the Δ6 or Δ9 positions of 16:0- and 18:0-ACP. Most notably, by replacement of five amino acids (A181T/A200F/S205N/L206T/G207A), the Δ6-16:0-ACP desaturase was converted into an enzyme that functions principally as a Δ9-18:0-ACP desaturase. Many of the determinants of fatty acid chain-length specificity in these mutants are found in residues that line the substrate binding channel as revealed by x-ray crystallography of the Δ9-18:0-ACP desaturase. The crystallographic model of the active site is also consistent with the diverged activities associated with naturally occurring variant acyl-ACP desaturases. In addition, on the basis of the active-site model, a Δ9-18:0-ACP desaturase was converted into an enzyme with substrate preference for 16:0-ACP by replacement of two residues (L118F/P179I). These results demonstrate the ability to rationally modify acyl-ACP desaturase activities through site-directed mutagenesis and represent a first step toward the design of acyl-ACP desaturases for the production of novel monounsaturated fatty acids in transgenic oilseed crops.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 67-amino acid cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) contains a signal(s) that prevents the receptor from entering lysosomes where it would be degraded. To identify the key residues required for proper endosomal sorting, we analyzed the intracellular distribution of mutant forms of the receptor by Percoll density gradients. A receptor with a Trp19 → Ala substitution in the cytoplasmic tail was highly missorted to lysosomes whereas receptors with either Phe18 → Ala or Phe13 → Ala mutations were partially defective in avoiding transport to lysosomes. Analysis of double and triple mutants confirmed the key role of Trp19 for sorting of the CD-MPR in endosomes, with Phe18, Phe13, and several neighboring residues contributing to this function. The addition of the Phe18-Trp19 motif of the CD-MPR to the cytoplasmic tail of the lysosomal membrane protein Lamp1 was sufficient to partially impair its delivery to lysosomes. Replacing Phe18 and Trp19 with other aromatic amino acids did not impair endosomal sorting of the CD-MPR, indicating that two aromatic residues located at these positions are sufficient to prevent the receptor from trafficking to lysosomes. However, alterations in the spacing of the diaromatic amino acid sequence relative to the transmembrane domain resulted in receptor accumulation in lysosomes. These findings indicate that the endosomal sorting of the CD-MPR depends on the correct presentation of a diaromatic amino acid-containing motif in its cytoplasmic tail. Because a diaromatic amino acid sequence is also present in the cytoplasmic tail of other receptors known to be internalized from the plasma membrane, this feature may prove to be a general determinant for endosomal sorting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Certain aminoacyl-tRNA synthetases have a second active site that destroys (by hydrolysis) errors of amino acid activation. For example, isoleucyl-tRNA synthetase misactivates valine (to produce valyl adenylate or Val-tRNAIle) at its active site. The misactivated amino acid is then translocated to an editing site located >25 Å away. The role of the misactivated amino acid in determining the rate of translocation is not known. Valyl-tRNA synthetase, a close homolog of isoleucyl-tRNA synthetase, misactivates threonine, α-aminobutyrate, and cysteine. In this paper, we use a recently developed fluorescence-energy-transfer assay to study translocation of misactivated threonine, α-aminobutyrate, and cysteine. Although their rates of misactivation are clearly distinct, their rates of translocation are similar. Thus, the rate of translocation is independent of the nature of the misactivated amino acid. This result suggests that the misactivated amino acid per se has little or no role in directing translocation.