917 resultados para Sulfur Oxidation
Resumo:
Mixtures of C6H6 and SF6 were polymerized in an r.f. discharge. Actinometry (quantitative optical emission spectroscopy) was used to determine trends in the plasma concentrations of the species F, H and CH as a function of the proportion of SF6 in the feed. Infrared spectroscopy and electron spectroscopy for chemical analysis were employed to characterize the deposited material. Increasing proportions of SF, in the feed produced increased fragmentation of the benzene molecules and greater fluorination of the deposited material. The deposition rate, as determined by optical interferometry, was found to be enhanced about 4 times by the presence of 10-20% SF6 in the feed. At 50% SF6 in the feed, deposition rates were greater than in pure C6H6 plasmas despite the (probably large) etching effect of atomic fluorine from the discharge. Relationships between the plasma composition, electron density and temperature, film composition and growth rate are discussed.
Resumo:
Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Primaquine, an antimalarial drug, presents a well-defined oxidation peak around +0.6V vs SCE at a glassy carbon electrode that can be used for its determination. Calibration graphs were obtained for primaquine in B-R buffer pH 4.0 from 3.00 x 10(-5) mol L-1 to 1.00 x 10(-2) mol L-1 using linear-scan voltammetry and 3.00 x 10(-5) mol L-1 to 1.00 x 10(-2) mol L-1 using differential pulse or square-wave voltammetry. The correspondent detection limits was 9.4 mu g mL(-1); 4.2 and 1.8 mu g mL(-1), respectively. All the voltammetric methods were applied with success in direct determination of the primaquine in commercial tablets without separation or extraction procedures.
Resumo:
The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F-1 > 100 kDa and F-2: 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F-5: 5-10 kDa, F-6: < 5 kDa). In contrast, the potentiometric study showed different concentration of functional groups in the studied HS fractions. The reduction of Hg(II) by aquatic HS fractions at pH 5 proceeded in two steps (I, II) of slow first order kinetics (t(1/2) of I: 160 min, t(1/2) of II: 300 min) weakly influenced by the molecular-size, in contrast to the differing degree of Hg(II) reduction (F-5 > F-2 > > F-1 > F-3 > F-4 > > F-6). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The ability of photoelectrocatalytic oxidation to degrade the commercially important copper-plitalocyanine dye, remazol turquoise blue 15 (RTB) was investigated. The best experimental condition was optimized, evaluating the performance of Ti/TiO2 thin-film electrodes prepared by sol-gel method in the decolourization of 32 mg L-1 RTB dye in 0.5 mol L-1 Na2SO4 pH 8 and applied potential of +1.5 V versus SCE under UV irradiation. Spectrophotometric measurements, high performance liquid chromatography, dissolved organic carbon (TOC) evaluation and stripping analysis of yielding solution obtained after 3 h of photoelectrolysis leads to 100% of absorbance removal from wavelength of 250-800 nm, 79.6% of TOC reduction and the releasing of up to 54.6% dye-bound copper (0.85 mg L-1) into the solution. Both, original and oxidized dye solution did not presented mutagenic activity with the strains TA98 and WOO of Salmonella in the presence and absence of S9 mix at the tested doses. Nevertheless, the yielding photoelectrocatalytic oxidized solution showed an increase in the acute toxicity for Vibrio fischeri bacteria, explained by copper liberation during treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work, the oxidizing action of a native strain type A. ferrooxidans on a sulphide containing a predominance of arsenopyrite and pyrite has been evaluated. Incubation of the A. ferrooxidans strain in flasks containing 200 mL of T&K medium with the ore (particle size of 106 mu m) at pulp density 8% (w/v) at 35 degrees C on a rotary shaker at 200 rpm resulted in preferential oxidation of the arsenopyrite and the mobilization of 88% of the arsenic in 25 days. Mineralogical characterization of the residue after biooxidation was carried out with FTIR. XRD and SEM/XEDS techniques. An in situ oxidation of the arsenopyrite is suggested on the basis of the frequent appearance of jarosite pseudomorph replacing arsenopyrite, in which the transformations Fe(2+) -> Fe(3+), S(-2) -> S(+6) and As(-1) -> As(+3) -> As(+5) occur for the most part without formation of soluble intermediates, resulting in a type of jarosite that typically contains high concentrations of arsenic (type A-jarosite). However, during pyrite oxidation, dissolution of the constituent Fe and S predominates, which is evidenced by corrosion of pyrite particles with formation of pits, generating a type of jarosite with high quantities of K (type B-jarosite). Lastly, a third type of jarosite (type C-jarosite) also precipitated forming a thin film that covered the grains of pyrite principally. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pentacarbonyliron was oxidized with H2O2, in organic solvents, to give colloidal sols. The aqueous-ethanolic sol is highly stable and undergoes thermally-reversible coagulation. Its solid phase was found to be a non-crystalline Fe (III) hydroxoacetate which is transformed to α-Fe2O3 when heated to 300°C. Iron-bound acetate groups are assumed to have a major role in the sol stability, by preserving the amorphous solid phase. Dry hydroxoacetate particles were heated under vacuum; scanning electron microscopy revealed that these particles coalesce and grow, as in a sintering process but at low temperatures (100-250°). © 1987.
Resumo:
Time-of-flight measurements were carried out in orthorhombic sulfur for various fields, ranging from -2 to -20 kV/cm. No dependence of the mobility with the electric field was found but the current, normalized by the initial current, showed an electric field dependence at small times, decaying faster for larger electric field. After the failure of the usual models in explaining the resultsincluding the assumption of depth-dependent density of trapsa model assuming an extra mobility channel near the surface provided a reasonable set of parameters independent of the electric field. The measurements were carried out at 8.5, 29, 53, 68, and 79°C. © 1988 The American Physical Society.
Sulfur and carbon isotopes in scapolite-bearing granulites of the São José do Rio Pardo area, Brazil
Resumo:
Sulfur and carbon isotope compositions of ten scapolites from granulite-facies rocks of the São José do Rio Pardo area, Guaxupé Complex, Brazil, were measured. Scapolite is the primary and major rock-forming mineral in these rocks (up to 40 volume %). The isotopic composition of the sulfate and carbonate group in the scapolite structure has δ34S values of +1.0‰ to +6.7‰, and δ13C values of -14.3‰ to -6.3‰, respectively. The sulfur isotope data may be related to an upper mantle (external) or lower crustal (internal) source for the sulfur, whereas the carbon appears to have been derived from an internal source. Thus, the carbon and sulfur isotope data can be explained without invoking an external (mantle) source. © 1993.