996 resultados para Sulfide minerals--New Jersey--Camden County--Maps.
Resumo:
Un dels objectius principals d’aquest treball és assumir un encàrrec de traducció jurídica. En aquest cas, es tradueix un testament; els testaments són documents jurídics a través dels quals una persona pot disposar els seus béns per a després de la seva mort i instituir hereus. El text de sortida es regeix pels Estatuts de l’Estat de Nova Jersey, és per això que aquest treball se centra en els testaments a Nova Jersey i a Espanya, concretament a Catalunya ja que la traducció és al català. La diferència més gran entre aquests dos països és que Espanya es basa en el Dret Civil i Estats Units en el Common Law; com que tenen característiques diferents, cal documentar-se sobre com funcionen els testaments a cada lloc abans de fer la traducció. Com veurem a continuació, la traducció de documents jurídics requereix precisió i responsabilitat, ja que el lèxic i l’estructura d’aquests tipus de documents és complex; per això, és important tenir accés a manuals de redacció i diccionaris especialitzats. Seguidament, veurem tots els passos que he seguit per portar a terme la traducció d’un testament.
Resumo:
The Iowa State Highway Commission Laboratory is called upon to determine the cement content of hardened concrete when field problems relating to batch weights are encountered. The standard test for determining the cement content is ASTM C-85. An investigation of this method by the New Jersey State Highway Department involving duplicate samples and four cooperating laboratories produced very erratic results, however, the results obtained by this method have not been directly compared to known cement contents of concrete made with various cements and various aggregates used in Iowa.
Resumo:
The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) `oxidation zone' characterized by low-pH (2.5-4), a `neutralization zone' (70-80 to 300-400 cm) and an unaltered `primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.
Resumo:
The breccia-hosted epithermal Au-Ag deposit of Rosia Montana is located 7 kin northeast of Abrud, in the northern part of the South Apuseni Mountains, Romania. Estimated total reserves of 214.91 million metric toils (Mt) of ore at 1.46 g/t An and 6.9 g/t Ag (10.1 Moz of An and 47.6 Moz of Ag) make Rosia Montana one of the largest gold deposits in Europe. At this location, Miocene calc-alkaline magmatic and hydrothermal activity was associated with local extensional tectonics within a strike-slip regime related to the indentation of the Adriatic microplate into the European plate during the Carpathian orogenesis. The host rocks of the magmatic complex consist of pre-Mesozoic metamorphosed continental crust covered by Cretaceous turbiditic sediment (flysch). Magmatic activity at Rosia Montana and its surroundings occurred in several pulses and lasted about 7 m.y, Rosia Montana is a breccia-hosted epithermal system related to strong phreatomagmatic activity due to the shallow emplacement of the Montana dacite. The Montana dacite intruded Miocene volcaniclastic material (volcaniclastic breccias) and crops out at Cetate and Carnic Hills. Current mining is focused primarily on the Cetate open pit, which was mapped in detail, leading to the recognition of three distinct breccia bodies: the dacite breccia with a dominantly hydrothermal matrix, the gray polymict breccia with a greater proportion of sand-sized matrix support, and the black polymict breccia, which reached to the surface, contains carbonized tree trunks and has a dominantly barren elastic matrix. The hydrothermal alteration is pervasive. Adularia alteration with a phyllic overprint is ubiquitous; silicification and argillic alteration occur locally. Mineralization consists of quartz, adularia, carbonates (commonly Mn-rich), pyrite, Fe-poor sphalerite, galena, chalcopyrite, tetrahedrite, and native gold and occurs as disseminations, as well as in veins and filling vugs within the Montana dacite and the different breccias. The age of mineralization (12.85 +/- 0.07 Ma) was determined by Ar-40- Ar-39 dating on hydrothermal adularia crystals from vugs in the dacite breccia in the Cetate open pit. Microthermometric measurements of fluid inclusions in quartz phenocrysts from the Montana dacite revealed two fluid types that are absent from the hydrothermal breccia and must have been trapped at depth prior to dacite dome emplacement: brine inclusions (32-55 -wt % NaCl equiv, homogenizing at T-h > 460 degrees C) and intermediate density fluids (4.9-15.6 wt % NaCl equiv, T, between 345 degrees-430 degrees C). Secondary aqueous fluid inclusion assemblages in the phenocrysts have salinities of 0.2 to 2.2 wt percent NaCl equiv and T-h of 200 degrees to 280 degrees C. Fluid inclusion assemblages in hydrothermal quartz from breccias and veins have salinities of 0.2 to 3.4 wt percent NaCl equiv and T-h, from 200 degrees to 270 degrees C. The oxygen isotope composition of several zones of an ore-related epithermal quartz crystal indicate a very constant delta O-18 of 4.5 to 5.0 per mil for the mineralizing fluid, despite significant salinity and temperature variation over time. Following microthermometry, selected fluid inclusion assemblages were analyzed by laser ablation-inductively coupled-plasma mass spectrometry (LA-ICMS). Despite systematic differences in salinity between phenocryst-hosted fluids trapped at depth and fluids from quartz in the epithermal breccias, all fluids have overlapping major and trace cation ratios, including identical Na/K/Rb/Sr/Cs/Ba. Consistent with the constant near-magmatic oxygen isotope composition of the hydrothermal fluids, these data strongly indicate a common magmatic component of these chemically conservative solutes in all fluids. Cu, Pb, Zn, and Mn show variations in concentration relative to the relatively non-reactive alkalis, reflecting the precipitation of sulfide minerals together with An in the epithermal breccia, and possibly of Cu in an inferred subjacent porphyry environment. The magmatic-hydrothermal processes responsible for epithermal Au-Ag mineralization at Rosia Montana are, however, not directly related to the formation of the spatially associated porphyry Cu-Au deposit of Rosia Poieni, which occurred lout 3 m.y. later.
Resumo:
Pb-Zn-Ag vein and listwaenite types of mineralization in Crnac deposit, Western Vardar zone, were deposited within several stages: (i) the pre-ore stage comprises pyrite, arsenopyrite, pyrrhotite, quartz, kaolinite and is followed by magnetite-pyrite; (ii) the syn-ore stage is composed of galena, sphalerite, tetrahedrite and stefanite; and (iii) the post-ore stage is composed of carbonates, pyrite, arsenopyrite and minor galena. The vein type mineralization is hosted by Jurassic amphibolites and veins terminate within overlying serpentinites. Mineralized listwaenites are developed along the serpentinite-amphibolite interface. The reserves are estimated to 1.7 Mt of ore containing in average 7.6% lead, 2.9% zinc, and 102 g/t silver. Sulfides from the pre- and syn-mineralization assemblage of the vein- and listwaenite-types of mineralization from the Crnac Pb-Zn-Ag deposit have been analyzed using microprobe, crush-leachates and sulfur isotopes. The pre-ore assemblage precipitated under high sulfur fugacities (f(S(2)) = 10(-8)-10(-6) bar) from temperatures ranging between 350 degrees C and 380 degrees C. Most likely water-rock reactions, boiling and/or increase of pH caused an increase of delta(34)S of pyrite toward upper levels within the deposit. The decomposition of pre-ore pyrrhotite to a pyrite-magnetite mixture occurred at a fugacity of sulfur from f(S(2)) = 8.7 x 10(-10) to 9.6 x 10(-9) bar and fugacity of oxygen from f(O(2)) = 2.4 x 10(-30) to 3.1 x 10(-28) bars, indicating a contribution of an oxidizing fluid, i.e. meteoric water during pre-ore stages of hydrothermal activity. The crystallization temperatures obtained by the sphalerite-galena isotope geothermometer range from 230 to 310 degrees C. The delta(34)S values of pre- and syn-ore sulfides (pyrite, galena, sphalerite, delta(34)S = 0.3-5.9 parts per thousand) point to magmatic sulfur. Values of delta(34)S of galena and sphalerite are decreasing upwards due to precipitation of early formed sulfide minerals. Post-ore assemblage precipitated at temperature below 190 degrees C. Based on data presented above, we assume two fluid sources: (i) a magmatic source, supported by sulfur isotopic compositions within pre- and syn-ore minerals and a high mol% of fluorine found within pre- and syn-ore leachates, and (ii) a meteoric source, deduced by coincident pyrite-magnetite intergrowth, sulfur isotopic trends within syn-ore minerals and decrease of crystallization temperatures from the pre-ore stage (380-350 degrees C), towards the syn-ore (310-215 degrees C) and post-ore stages (<190 degrees C). Post-ore fluids are Na-Ca-Mg-K-Li chlorine rich and were modified via water-rock reactions. Simple mineral assemblage and sphalerite composition range from 1.5 to 10.1 mol% of FeS catalog Crnac to a group of intermediate sulfidation epithermal deposit. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This report synthesizes the safety corridor programs of 13 states that currently have some type of program: Alaska, California, Florida, Kentucky, Minnesota, New Jersey, New Mexico, New York, Ohio, Oregon, Pennsylvania, Virginia, and Washington. This synthesis can help Midwestern states implement their own safety corridor programs and select pilot corridors or enhance existing corridors. Survey and interview information about the states’ programs was gathered from members of each state department of transportation (DOT) and Federal Highway Administration (FHWA) division office. Topics discussed included definitions of a safety corridor; length and number of corridors in the program; criteria for selection of a corridor; measures of effectiveness of an implemented safety corridor; organizational structure of the program; funding and legislation issues; and engineering, education, enforcement, and emergency medical service strategies. Safety corridor programs with successful results were then examined in more detail, and field visits were made to Kansas, Oregon, Pennsylvania, and Washington for first-hand observations. With the survey and field visit information, several characteristics of successful safety corridor programs were identified, including multidisciplinary (3E and 4E) efforts; selection, evaluation, and decommissioning strategies; organization structure, champions, and funding; task forces and Corridor Safety Action Plans; road safety audits; and legislation and other safety issues. Based on the synthesis, the report makes recommendations for establishing and maintaining a successful safety corridor program.
Resumo:
Kirjallisuusarvostelu
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Palynomorphs from two siliciclastic margins were examined to gain insights into continental margin architecture. Sea level change is thought to be one of the primary controls on continental margin architecture. Because Late Neogene glacioeustasy has been well studied marine sediments deposited during the Late Neogene were examined to test this concept. Cores from the outer shelf and upper slope were taken from the New Jersey margin in the western North Atlantic Ocean and from the Sunda Shelf margin in the South China Sea. Continental margin architecture is often described in a sequence stratigraphic context. One of the main goals of both coring projects was to test the theoretical sequence stratigraphic models developed by a research group at Exxon (e.g. Wilgus et al., 1988). Palynomorphs provide one of the few methods of inferring continental margin architecture in monotonous, siliciclastic marine sediments where calcareous sediments are rare (e.g. New Jersey margin). In this study theoretical models of the palynological signature expected in sediment packages deposited during the various increments of a glacioeustatic cycle were designed. These models were based on the modem palynomorph trends and taphonomic factors thought to control palynomorph distribution. Both terrestrial (pollen and spores) and marine (dinocysts) palynomorphs were examined. The palynological model was then compared with New Jersey margin and Sunda Shelf margin sediments. The predicted palynological trends provided a means of identifying a complete cycle of glacioeustatic change (Oxygen Isotope Stage 5e to present) in the uppermost 80 meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea level change, is thought to be the major factor controlling margin architecture during the late Pleistocene here at the upper slope. This is likely a function of the glacial scouring of the continents which significantly increases sediment availability during glacial stages. The subaerially exposed continental shelf during the lowstand periods would have been subject to significant amounts of erosion fi:om the proglacial rivers flowing fi-om the southern regions of the ice-sheet. The slope site is non-depositional today and was also non-depositional during the last full interglacial period. The palynomorph data obtained fi-om the South China Sea indicate that the major difference between the New Jersey Margin sites and the Sunda Shelf margin sites is the variation in sediment supply and the rate of sediment accumulation. There was significantly less variation in sediment supply between glacial and interglacial periods and less overall sediment accumulation at the Sunda Shelf margin. The data presented here indicate that under certain conditions the theoretical palynological models allow the identification of individual sequence stratigraphic units and therefore, allow inferences regarding continental margin architecture. The major condition required in this approach is that a complete and reliable database of the contemporaneous palynomorphs be available.
Resumo:
Gideon Sundback was born in Stockholm, Sweden in 1880. He was educated as an engineer and settled in the United States in 1905. While working for the Universal Fastener Company, New Jersey in 1913 he developed and patented a “separable fastener”, which improved on an earlier version of what today is known as the zipper. He later moved his family to Meadville, Pennsylvania and sought a Canadian location for the production of his new invention. He settled on St. Catharines as it was an easy commute from his Pennsylvania home and opened The Lightning Fastener Company on Niagara Street. Sundback died on June 21, 1954 and is interred in Meadville, Pennsylvania. The plant continued to operate, but with increased foreign competition the manufacture of the zipper declined. The plant closed in 1981. Source: The St. Catharines Standard, July 3, 2004 Harold Fox was a noted lawyer, academic, businessman, author and a leading authority on intellectual property. He was engaged by Gideon Sunback and the Lightening Fastening Company to combat patent infringements by Colonial Fastener in the 1930s. The relationship continued when Fox was asked to become the managing director of the company, which he did until 1949. Fox lived in St. Catharines at his home “Foxcroft” until his death in 1969. Source: http://thefoxfund.com/harold.htm (November 2, 2009)
Resumo:
Lt. Daniel Shannon fl. 1777-1822, was the only son of Susan Drake, granddaughter of Rev. Thomas Drake, eldest brother of Sir Francis Drake, and Captain Daniel Shannon of the Royal Navy. He married Elizabeth Garvey, daughter of Alexander Garvey and Catharine Borden of New Jersey. Lt. Shannon was a Regular in the British Army and on February 12, 1777 he joined the Royal Standard, 5th New Jersey Volunteers. After being arrested and sentenced to hang for spying he was pardoned through the efforts of his mother Susan Drake Shannon who pleaded his case with the Governor. He served under General Cornwallis at the surrender in Virginia in 1781. In 1783 he moved to New Brunswick, Canada where he was reduced to a half-pay ensign in the 2nd Regiment of the Lincoln Militia. He was granted 500 acres of land on the St. Johns River, and on April 1, 1786 his daughter Catharine was born there. The family returned to the United States, residing in Pennsylvania, for a short time. In 1800 Lt. Shannon, with his mother and family, returned to Canada and settled in Stamford Township where he bought 200 acres of land on the Niagara River near the whirlpool. He later served in the Secret Service during the War of 1812 and was stationed at a lookout point on the Niagara River below the falls. In 1806 Shannon’s daughter, Catharine, married Thomas Lundy, fourth son of William Lundy of Stamford Township.
Resumo:
John Willson first came to Upper Canada along with his friend Nathaniel Pettit in the late 1700s. They both moved with their families from New Jersey where they had both been imprisioned for not siding with the rebels and maintaining Loyalist allegiences. Pettit arrived with his four daughters, leaving his son behind. Willson came with his wife and nine children. Willson received 1200 acres of land as well as 200 per child. He settled at the corner of Dorchester road and Thorold Stone Road, where he and his family did very well for themselves. Willson as well as his son Thomas ran ox-teams on the portage. His son John became the proprietor of the Exchange hotel at Niagara, and Charles operated at the Pavilion hotel at Falls View. Shortly after his arrival in Upper Canada John Willson changed his name to “Irish” John Willson, as there were 5 other “John Willsons” which appeared on the Loyalists lists. Irish John drowned in the Niagara River in 1798, and his family continued to thrive in Niagara after his death. His second son Thomas Willson, married Abigail Pettit, daughter of his Father’s friend Nathaniel. Thomas was awarded 250 acres of land as a Loyalist and 200 for Abigail, as she was the daughter of a loyalist. He became a blacksmith and also operated ox-teams along the portage. He was Assessor for Stamford Township for 1800, 1807, 1820 and 1829. During the years 1808, 1822, 1825, 1826 and 1831 he was a tax collector and overseer of Statute of Labour. Thomas and Abigail Willson had nine children together. Francis Bond Head Willson of Beaverdams (mentioned throughout the collection) was a great grandson of Thomas and Abigail. Thomas and his wife are both buried beside the Lundy’s Lane United Church. *for more information on the remaining Willson family please refer to box #1, folders 1-3. * Genealogical information from a paper prepared by Pearl Wilson and given before the Lundy’s Lane Historical Society, May 1945, by Hazel Culp Ferris. Box 1 Folder 1.