938 resultados para Submarine Pipelines


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the permanently to seasonally ice-covered Arctic Ocean is a unique and sensitive component in the Earth's climate system, the knowledge of its long-term climate history remains very limited due to the restricted number of pre-Quaternary sedimentary records. During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides over a distance of >350 km along Lomonosov Ridge. Removal of younger sediments from steep headwalls has led to exhumation of Miocene to early Quaternary sediments close to the seafloor, allowing the retrieval of such old sediments with gravity cores. Multi-proxy biomarker analyses of these gravity cores reveal for the first time that the late Miocene central Arctic Ocean was relatively warm (4-7°C) and ice-free during summer, whereas sea ice occurred during spring and autumn/winter. A comparison of our proxy data with Miocene climate simulations seems to favour relatively high late Miocene atmospheric CO2 concentrations. These new findings from the Arctic region provide new benchmarks for groundtruthing global climate reconstructions and modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed study of strontium isotope variations in Neogene marine carbonate sediments from Deep Sea Drilling Project Site 590B, using techniques that allow the 87Sr/86Sr ratio to be determined to better than +/-0.00001, gives a high-resolution record of the Sr isotopic evolution of seawater. The data show that the rate of change of the marine 87Sr/86Sr ratio has varied significantly even on time scales as short as 1 m.y. Periods of particularly rapid growth appear to follow major marine regressions and probably reflect an increase in the delivery of radiogenic Sr from the continents coupled with a decreased submarine carbonate dissolution rate (greater carbonate compensation depth). Periods of relatively slowly changing 87Sr/86Sr follow major marine transgressions. On the basis of correlations with the marine oxygen isotope record and the times of major continental glacier growth, it is inferred that the effects of sea-level variations are modified by climatic factors that affect the intensity of continental weathering and runoff. The effects of sea-floor generation rate variations are not discernible for the Neogene. The maximum attainable stratigraphic resolution using Sr isotopes is between 0.1 and 2 m.y. for this time period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of Li isotopes in pore waters to a depth of 1157 m below seafloor is presented for ODP Sites 918 and 919 in the Irminger Basin, offshore Greenland. Lithium isotope data are accompanied by strontium isotope ratios to decipher diagenetic reactions in the sediments which are characterized by the pervasive presence of volcanic material, as well as by very high accumulation rates in the upper section. The lowering of the 87Sr/86Sr ratio below contemporaneous seawater values indicates several zones of volcanic material alteration. The Li isotope profiles are complex suggesting a variety of exchange reactions with the solid phases. These include cation exchange with NH4+ and mobilization from sediments at depth, in addition to the alteration of volcanic matter. Lithium isotopes are, therefore, a sensitive indicator of sediment-water interaction. d6Li values of pore waters at these two sites vary between -42 and -25?. At shallow depths (<100 mbsf), rapid decreases in the Li concentration, accompanied by a shift to heavier isotopic compositions, indicate uptake of Li into alteration products. A positive anomaly of d6Li observed at both sites is coincident with the NH4+ maximum produced by organic matter decomposition and may be related to ion exchange of Li from the sediments by NH4+. In the lower sediment column at Site 918, dissolved Li increases with depth and is characterized by enrichment of 6Li. The Li isotopic compositions of both the waters and the solid phase suggest that the enrichment of Li in deep interstitial waters is a result of release from pelagic sediments. The significance of sediment diagenesis and adsorption as sinks of oceanic Li is evaluated. The maximum diffusive flux into the sediment due to volcanic matter alteration can be no more than 5% of the combined inputs from rivers and submarine hydrothermal solutions. Adsorption on to sediments can only account for 5-10% of the total inputs from rivers and submarine hot springs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extensive radiograph study of 24 undisturbed, up to 206-cm long box and gravity cores from the western part of the Strait of Otranto revealed a great variety of primary bedding structures and secondary burrowing features. The regional distribution of the sediments according to their structural, textural, and compositional properties reflects the major morphologic subdivisions of the strait into shelf, slope, and trough bottom (e.g., the bottom of the northern end of the Corfu-Kephallinia Trough, which extends from the northeastern Ionian Sea into the Strait of Otranto): (1) The Apulian shelf (0 to -170m) is only partly covered by very poorly sorted, muddy sands without layering. These relict(?) sands are rich in organic carbonate debris and contain glauconite and reworked (?Pleistocene) ooids. (2) The slope sediments (-170 to -1,000 m) are poorly sorted, sandy muds with a high degree of burrowing. One core (OT 5) is laminated and shows slump structures. An origin of these slumped sediment masses from older deposits higher on the slope was inferred from their abnormal compaction, color, texture, organic content, and mineral composition. (3) Cores from the northern end of the Corfu-Kephallinia Trough (-980 to -1,060 m) display a few graded sand layers, 2-5 cm (maximum 30 cm) thick with parallel and ripple-cross-laminations, deposited by oceanic bottom or small-scale turbidity currents. They are intercalated with homogeneous lutite. (4) Hemipelagic sediments prevail in the more southerly part of the Corfu-Kephallinia Trough and on the "Apulian-Ionian Ridge", the southern submarine extension of the Apulian Peninsula. Below a core depth of 160 cm, these cores have a laminated ("varved") zone, representing an Early Holocene (Boreal-Atlanticum) "stagnation layer" (14C age approximately 9,000 years). The terrigenous components of the surface sediments as well as those of the deeper sand layers can be derived from the Apulian shelf and the Italian mainland (Cretaceous Apulian Plateau and Gargano Mountains, southern Apennines, volcanic province of the Monte Vulture). Indicated by the heavy mineral glaucophane, a minor proportion of the sedimentary material is probably of Alpine origin. If this portion is considered to be first-cycle clastic material it reaches the Strait of Otranto after a longitudinal transport of 700 km via the Adriatic Sea. The lack of phyllosilicates in the coarse- to medium-grained shelf samples might be explained by the activity of the "Apulian Current" (surface velocities up to 4 knots) which in the past possibly has affected the bottom almost down to depths of the shelf edge. The percentage of planktonic organisms, and also the plankton: benthos ratio in the sediments is a useful indicator for bathymetry (depth zonation).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study of chemical composition of 26 samples collected at depths from 400 to 1400 m on vertex surfaces of the Southeast Indian Ridge, Mascarene Ridge, Madagascar Ridge, and Mozambique Ridge, as well as on the upper part of the Southeast Africa continental slope showed that the samples represent three groups of rocks: 1) low phosphate or phosphate-free ferromanganese rocks, 2) phosphate ferromanganese rocks 3) phosphorites and phosphatized limestones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basement of Bougainville Guyot drilled at Site 831 consists of andesitic hyalobreccias derived from a submarine arc volcano. The volcanic sequence has been dated by K/Ar at approximately 37 Ma. The 121 m of andesitic hyalobreccias drilled in Hole 831B have been divided into five subunits of two types: one appears to be primary, and the other contains evidence of reworking and a subaerial clastic input. Variations are attributed to fluctuations in water depth. The distinctive hyalobreccias consist of andesitic blebs with chilled margins and peripheral fractures set in a chaotic greenish matrix that is mainly altered glass, with crystals similar to those in the blebs or clasts. Their formation is attributed to violent reaction of andesitic magma discharged into seawater, in perhaps the submarine equivalent of fire-fountaining. There was limited reworking by currents and debris flows on the flanks of the submarine volcano. The andesite shows no significant compositional variation in phenocryst phases throughout the drilled sequence and contains phenocrysts of plagioclase (An88-43), clinopyroxene (Ca44Mg46Fe10-Ca41Mg40Fe19), orthopyroxene (Ca4Mg79Fe17-Ca3Mg58Fe39), and titanomagnetite. There is a systematic change in volcanic composition with height in the section, from more mafic andesites at the base, to overlying more acid andesites, and strong evidence exists that magma mixing may have played a significant role in the genesis of these lavas. The andesites have affinities with the low-K arc tholeiite series. Trace element and isotopic systematics for these rocks indicate very minor involvement of a LILE- and 87Sr-enriched slab-derived fluid in their petrogenesis. This accords with the previous suggestion that Bougainville Guyot forms part of an Eocene proto-island arc developed along the southern side of the d'Entrecasteaux Zone, above a southward-dipping subduction zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coastal systems, are often subjected to high anthropogenic pressure, which makes it necessary to develop new techniques to assess the environmental impacts caused by such human activity. This paper presents the first results obtained during the development and implementation of a new equipment of submarine geophysics survey oriented to integrated coastal zone management (ICZM). It is based on the drag of a submarine in contact with the sea-bottom. The submarine is equipped with an electromagnetic sensor which allows the measurement of the magnetic susceptibility and electrical conductivity of the surface sediments continuously and to a depth of sediment of 40 cm. This system, once improved, will allow us to obtain valuable information for monitoring the environmental quality of coastal areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shedding of shallow carbonate material toward the deep slopes and basin floors is clearly tied to the position of the carbonate bank tops relative to the photic zone. The onset of bank shedding in periplatform sediments can record either the flooding of the bank tops within the photic zone during a rise in sea level following a period of exposure, referred to in the literature as the "highstand shedding" scenario, or the reentry of the bank tops into the photic zone during a lowering of sea level following a period of drowning, referred to as the "lowstand shedding" scenario. Results from Leg 133 post-cruise research on the Pliocene sequences, drilled in six sites within different slope settings of the Queensland Plateau, seem to point out that the latter "lowstand shedding" scenario can be applied to this particular carbonate system. At the Queensland Plateau sites, the early Pliocene (5.2-3.5 Ma) and the earliest part of the late Pliocene (3.5-2.9 Ma) age sequences were characterized, especially in the ôdeepö Sites 811 and 817, by pelagic sediments (foraminifers and coccoliths) and by typically pelagic sedimentation rates not exceeding 20 mm/k.y. The earliest part of the late Pliocene age section was characterized by well-developed hardgrounds in the "shallow" Sites 812 and 814 and by normal pelagic sediments mixed with reworked phosphatized planktonic foraminifers in Site 813. Finally, the early part of the late Pliocene (2.9-2.4 Ma) section was characterized by high sedimentation rates, related to the shedding and admixture into the pelagic sediments of bank-derived materials. These bank-derived materials consist of either diagenetically unaltered fine aragonite with traces of dolomite in Site 818 or micritic calcite resulting from seafloor and/or shallow burial alteration in the deepest Sites 817 and 811. The highest sedimentation rates (163 mm/k.y.) were recorded in Site 818, drilled nearest the modern carbonate bank of Tregrosse Reef. The sedimentation rates decrease with increasing distance from Tregrosse Reef - 120 mm/k.y. in Site 817 and 47.5 mm/k.y. in Site 811. The initial appearance of fine aragonite in Site 818, corresponding to the transition from pelagic to periplatform sedimentation rates, has been dated at 2.9 Ma. This Pliocene sediment pattern on the Queensland Plateau is different from the pattern observed in sediments from two earlier ODP legs (i.e., Leg 101 in the Bahamas and in Leg 115 in the Maldives), where aragonite-rich sediments, characterized by high periplatform sedimentation rates, were observed in the lower Pliocene section (5.2-3.5 Ma), whereas the upper Pliocene (3.5-1.6 Ma) sediments are more pelagic in nature and are characterized by low sedimentation rates or major hiatuses. These Pliocene periplatform sequences in the Bahamas and in the Maldives and late Quaternary age periplatform sequences worldwide have pointed out that "highstand shedding" was the typical response of carbonate platforms to fluctuations in sea level, just opposite to a "lowstand shedding" response to sea-level fluctuations, typical of siliciclastic shelves. Assuming that the envelope of Haq et al.'s (1987) sea-level curve, showing a well-defined lowering of sea level between 3.5 and 2.9 Ma, can also be applied to the southwest Pacific Ocean, based on a high-resolution Pliocene d18O record from the Ontong Java Plateau recently published by Jansen et al. (1993, doi:10.2973/odp.proc.sr.130.028.1993), the Pliocene periplatform sequences on the Queensland Plateau would have recorded the reentry of the bank tops into the photic zone during a general lowering of sea level, following an interval characterized by high sea level, during which the shallow carbonate system on the Queensland Plateau was drowned. The early Pliocene age (5.2-3.5 Ma) sediments deposited on the Queensland Plateau, an established interval of eustatic sea-level highstand, are typically pelagic in character. In addition, relatively cold surface temperatures (estimated to have ranged from 18° to 20°C by Isern et al. [this volume]) might have also stressed the reefs during early Pliocene time and contributed to the drowning of the Queensland Plateau carbonate system during the late Miocene and early Pliocene. Differential and relatively high subsidence rates, inferred by variations in paleodepth of water (based upon benthic foraminifer assemblages; Katz and Miller, this volume) may also have influenced the drowning of the carbonate bank tops on the Queensland Plateau during the late Miocene and early Pliocene. The sediments of early late Pliocene age (2.9-2.4 Ma), a well-established interval of lowering of sea level, are clearly periplatform and cyclic in nature. High-frequency (~40 k.y.) aragonite cycles, well-developed between 2.9 and 2.45 Ma, correlate with the planktonic high-resolution Pliocene d18O record from the Ontong Java Plateau, a good sea-level proxy (Jansen et al., in press). Contrary to late Quaternary age aragonite cycles from the Bahamas, the Nicaragua Rise, the Maldives, and the Queensland Plateau, the late Pliocene aragonite cycles in Hole 818B display high levels of aragonite during glacial stages and, therefore, lowstands of sea level. In addition, sediments deposited during the earliest part of the late Pliocene (3.5-2.9 Ma), transition between the early Pliocene highstand and the late Pliocene lowering in sea level, have recorded the first evidence of a fall in sea level, by (1) the occurrence of synchronous submarine hardgrounds in the two shallowest sites (Sites 812 and 814), (2) the deposition of reworked material from the shallower part of the slope into the intermediate Sites 813 and 818, and (3) the deposition of pelagic sediments in the deepest Sites 817 and 817. In summary, contrary to previous findings, the Pliocene periplatform sediments on the Queensland Plateau appear to have recorded a regional shedding of shallow carbonate bank tops during an interval of sea-level lowering, a good illustration of the "carbonate lowstand shedding" scenario, occurring during the reentry of previously drowned carbonate bank tops into the photic zone related to a decrease in sea level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the south-eastern Tyrrhenian deep-sea floor, four sediment cores of "Meteor" cruise 22 (1971) are described. These cores were taken in the basin between the Aeolian Islands and the Marsili Seamount, an elevation of more tha 3000 m above the sea floor. The sedimentation of the deep-sea basin is distinguished by a sequence of turbidites with a high sedimentation rate. The composition of the clastic material and the position of the cores in the mouth area of the morphologically very pronounced Stromboli Canyon suggest an interpretation of the turbidite sequence as fan of this canyon onto the deep-sea floor. A white rhyolitic pumice-tephra at the base of the 4 m thick sequence of turbidites in core M22-102 has been correlated with the Pelato eruption of the island of Liparo in the 6th century A.D. At the foot of the Marsili Seamount - apparently in morphologically elevated positions - the influence of the turbidite sedimentation increases, the rate of sedimentation is lower and stratigraphic omissions are probable. Here, rather compacted globigerina marls have been found in only 15 -25 cm depth. In addition, volcanic material in the form of lapilli layers, palagonitized ashes and detrital volcanic sands of the Marsili Seamount have been encountered in this area. An up to 3 cm thick layer of completely palagonitized basaltic ash intercalates with the marls at the base of two cores. Layers of very fresh olivine basaltic lapilli in core 103 and palagonitized lapilli of latitic composition in core 104 testify to an explosive submarine volcanism of the Marsili Seamount. According to the stratigraphy of core 103, the latest manifestations of this basaltic volcanism belong to the late Pleistocene (Emiliana huxleyi-zone of Nannoplankton stratigraphy) The basaltic lapilli are glassy to perhyaline with phenocrysts or microphenocrysts predominantely of olivine. The petrological character of the basaltic volcanites with high MgO, Ni, Cr and high MgO/FeO- and Ni/Co-ratios exhibits primitive basaltic features. These basalts clearly differ from basalts of the ocean floors, mid-ocean ridges and marginal basins. Prominent features are a missing iron-enrichment trend and low TiO2. Al2O3 tends to be high, as well as K2O and related trace elements (Ba, Sr). In spite of silica undrsaturation and high color index, the Marsili basalt exhibit some analogies with the calcalkaline basalts of the Aeolian arc, as well as the undersaturated basalts of some other circumoceanic areas.