938 resultados para Structure-function relationship
Resumo:
AIMS: The aim of this study was to investigate the heritability as well as genetic and environmental correlations of left ventricular (LV) structural and functional traits in complex pedigrees of a Caucasian population. METHODS AND RESULTS: We randomly recruited 459 white European subjects from 52 families (50% women; mean age 45 years). LV structure was measured by M-mode and 2D echocardiography and LV function was measured by conventional Doppler and tissue Doppler imaging (TDI). Other measurements included blood pressure, anthropometric, and biochemical measurements. We estimated the heritability of LV traits while adjusting for covariables, including sex, age, body height and weight, systolic and diastolic blood pressures, and heart rate. With full adjustment, heritability of LV mass was 0.23 (P= 0.025). The TDI-derived mitral annular velocities Ea and Aa showed moderate heritability (h(2)= 0.36 and 0.53, respectively), whereas the mitral inflow A peak had weak heritability (h(2) = 0.25) and the E peak was not heritable (h(2) = 0.11). We partitioned the total phenotypic correlation when it reached significance, into a genetic and an environmental component. The genetic correlations were 0.61 between the E and Ea peaks and 0.90 between the A and Aa peaks. CONCLUSION: Our study demonstrated moderate heritability for LV mass as well as the mitral annular Ea and Aa peaks. We also found significant genetic correlations between the E and Ea peaks and between the A and Aa peaks. Our current findings support the ongoing research to map and detect genetic variants that contribute to the variation in LV mass and other LV structural and functional phenotypes.
Resumo:
LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Resumo:
284 million people worldwide suffered from type 2 diabetes mellitus (T2DM) in 2010, which will, in approximately half of them, lead to the development of diabetic peripheral neuropathy (DPN). Although DPN is the most common complication of diabetes mellitus and the leading cause of non-traumatic amputations its pathophysiology is still poorly understood. To get more insight into the molecular mechanism underlying DPN in T2DM, I used a rodent model of T2DM, the db/db mice.¦ln vivo electrophysiological recordings of diabetic animals indicated that in addition to reduced nerve conduction velocity db/db mice also present increased nerve excitability. Further ex vivo evaluation of the electrophysiological properties of db/db nerves clearly established a presence of the peripheral nerve hyperexcitability (PNH) phenotype in diabetic animals. Using pharmacological inhibitors we demonstrated that PNH is mostly mediated by the decreased activity of Kv1 channels. ln agreement with these data 1 observed that the diabetic condition led to a reduced presence of the Kv1.2 subunits in juxtaparanodal regions of db/db peripheral nerves whereas its mANA and protein expression levels were not affected. Lmportantly, I confirmed a loss of juxtaparanodal Kv1.2 subunits in nerve biopsies from type 2 diabetic patients. Together these observations indicate that the type 2 diabetic condition leads to potassium-channel mediated changes of nerve excitability thus identifying them as potential drug targets to treat sorne of the DPN related symptoms.¦Schwann cells ensheath and isolate peripheral axons by the production of myelin, which consists of lipids and proteins in a ratio of 2:1. Peripheral myelin protein 2 (= P2, Pmp2 or FABP8) was originally described as one of the most abundant myelin proteins in the peripheral nervous system. P2, which is a member of the fatty acid binding protein (FABP) family, is a 14.8 kDa cytosolic protein expressed on the cytoplasmic side of compact myelin membranes. As indicated by their name, the principal role of FABPs is thought to be the binding and transport of fatty acids.¦To study its role in myelinating glial cells I have recently generated a complete P2 knockout mouse model (P2-/-). I confirmed the loss of P2 in the sciatic nerve of P2-/- mice at the mRNA and protein level. Electrophysiological analysis of the adult (P56) mutant mice revealed a mild but significant reduction in the motor nerve conduction velocity. lnterestingly, this functional change was not accompanied by any detectable alterations in general myelin structure. However, I have observed significant alterations in the mRNA expression level of other FABPs, predominantly FABP9, in the PNS of P2-/- mice as compared to age-matched P2+/+ mice indicating a role of P2 in the glial myelin lipid metabolism.¦Le diabète de type 2 touche 284 million de personnes dans le monde en 2010 et son évolution conduit dans la moitié des cas à une neuropathie périphérique diabétique. Bien que la neuropathie périphérique soit la complication la plus courante du diabète pouvant conduire jusqu'à l'amputation, sa physiopathologie est aujourd'hui encore mal comprise. Dans le but d'améliorer les connaissances moléculaires expliquant les mécanismes de la neuropathie liée au diabète de type 2, j'ai utilisé un modèle murin du diabète de type 2, les souris db/db.¦ln vivo, les enregistrements éléctrophysiologiques des animaux diabétiques montrent qu'en plus d'une diminution de la vitesse de conduction nerveuse, les souris db/db présentent également une augmentation de l'excitabilité nerveuse. Des mesures menées Ex vivo ont montré l'existence d'un phénotype d'hyperexcitabilité sur les nerfs périphériques isolés d'animaux diabétiques. Grâce à l'utilisation d'inhibiteurs pharmacologiques, nous avons pu démontrer que l'hyperexcitabilité démontrée était due à une réduction d'activité des canaux Kv1. En accord avec ces données, j'ai observé qu'une situation de diabète conduisait à une diminution des canaux Kv1.2 aux régions juxta-paranodales des nerfs périphériques db/db, alors que l'expression du transcrit et de la protéine restait stable. J'ai également confirmé l'absence de canaux Kv1.2 aux juxta-paranoeuds de biopsies de nerfs de patients diabétiques. L'ensemble de ces observations montrent que les nerfs périphériques chez les patients atteints de diabète de type 2 est due à une diminution des canaux potassiques rapides juxtaparanodaux les identifiant ainsi comme des cibles thérapeutiques potentielles.¦Les cellules de Schwann enveloppent et isolent les axones périphériques d'une membrane spécialisée, la myéline, composée de deux fois plus de lipides que de protéines. La protéine P2 (Pmp2 "peripheral myelin protein 2" ou FABP8 "fatty acid binding protein") est l'une des protéines les plus abondantes au système nerveux périphérique. P2 appartient à la famille de protéines FABP liant et transportant les acides gras et est une protéine cytosolique de 14,8 kDa exprimée du côté cytoplasmique de la myéline compacte.¦Afin d'étudier le rôle de P2 dans les cellules de Schwann myélinisantes, j'ai généré une souris knockout (P2-/-). Après avoir validé l'absence de transcrit et de protéine P2 dans les nerfs sciatiques P2-/-, des mesures électrophysiologiques ont montré une réduction modérée mais significative de la vitesse de conduction du nerf moteur périphérique. Il est important de noter que ces changements fonctionnels n'ont pas pu être associés à quelconque changement dans la structure de la myéline. Cependant, j'ai observé dans les nerfs périphériques P2-/-, une altération significative du niveau d'expression d'ARNm d'autres FABPs et en particulier FABP9. Ce dernier résultat démontre l'importance du rôle de la protéine P2 dans le métabolisme lipidique de la myéline.
Resumo:
The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.
Resumo:
BACKGROUND: The relationship between coronary endothelial function and coronary calcification is not well established. METHODS: Forty-six patients 17 men [37%]; age, 47.4+/-11.4 years prospectively underwent testing for coronary endothelial function and measurement of coronary artery calcification (CAC). RESULTS: Log CAC scores were not significantly different between patients with normal (n=31) and abnormal (n=15) response of epicardial coronary artery diameter to acetylcholine (%CAD(Ach)) (median (25, 75 percentile) 1.1 (0.0, 3.7) vs. 0.3 (0.0, 2.4), P=.32) and with normal (n=28) and abnormal (n=18) response of coronary blood flow to acetylcholine (%CBF(Ach)) (0.5 (0.0, 3.6) vs. 0.5 (0.0, 3.2), P=.76). Log CAC scores did not correlate with %CAD(Ach) (r=0.08, P=.59), %CBF(Ach) (r=0.14, P=.35). CONCLUSIONS: In patients without significant coronary artery disease, coronary endothelial dysfunction showed no apparent association with coronary calcification. Our findings suggest that these 2 markers may represent separate, independent processes in the progression of coronary atherosclerosis.
Resumo:
BACKGROUND: Obesity is a major health problem in the Western world. Among obese subjects cardiac pathology is common, but conventional noninvasive imaging modalities are often suboptimal for detailed evaluation of cardiac structure and function. We investigated whether cardiovascular magnetic resonance imaging (CMR) can better characterize possible cardiac abnormalities associated with obesity, in the absence of other confounding comorbidities. METHODS: In this prospective cross-sectional study, CMR was used to quantify left and right ventricular volumes, ejection fraction, mass, cardiac output, and apical left ventricular rotation in 25 clinically healthy obese men and 25 age-matched lean controls. RESULTS: Obese subjects had higher left ventricular mass (203 +/- 38 g vs. 163 +/- 22 g, p < 0.001), end-diastolic volume (176 +/- 29 mL vs. 156 +/- 25 mL, p < 0.05), and cardiac output (8.2 +/- 1.2 L/min vs. 6.4 +/- 1.3 L/min, p < 0.001). The obese also had increased right ventricular mass (105 +/- 25 g vs. 87 +/- 18 g, p < 0.005) and end-diastolic volume (179 +/- 36 mL vs. 155 +/- 28 mL, p < 0.05). When indexed for height, differences in left and right ventricular mass, and left ventricular end-diastolic volume remained significant. Apical left ventricular rotation and rotational velocity patterns were also different between obese and lean subjects. CONCLUSIONS: Obesity is independently associated with remodeling of the heart. Cardiovascular magnetic resonance imaging identifies subtle cardiac abnormalities and may be the preferred imaging technique to evaluate cardiac structure and function in the obese.
Resumo:
While the E. coli RecA protein has been the most intensively studied enzyme of homologous recombination, the unusual RecA-DNA filament has stood alone until very recently. It now appears that this protein is part of a universal family that spans all of biology, and the filament that is formed by the protein on DNA is a universal structure. With RecA's role in recombination given new and greatly increased significance, we focus in this review on the energetics of the RecA-mediated strand exchange and the relation between the energetics and recombination spanning heterologous inserts.
Resumo:
OBJECTIVE: Experimental evidence suggests that aldosterone directly contributes to organ damage by promoting cell growth, fibrosis, and inflammation. Based on these premises, this work aimed to assess the glomerular effects of aldosterone, alone and in combination with salt. METHODS: After undergoing uninephrectomy, 75 rats were allocated to five groups: control, salt diet, aldosterone, aldosterone + salt diet, aldosterone + salt diet and eplerenone, and they were all studied for four weeks. We focused on glomerular structural, functional, and molecular changes, including slit diaphragm components, local renin-angiotensin system activation, as well as pro-oxidative and profibrotic changes. RESULTS: Aldosterone significantly increased systolic blood pressure, led to glomerular hypertrophy, mesangial expansion, and it significantly increased the glomerular permeability to albumin and the albumin excretion rate, indicating the presence of glomerular damage. These effects were worsened by adding salt to aldosterone, while they were reduced by eplerenone. Aldosterone-induced glomerular damage was associated with glomerular angiotensin-converting enzyme (ACE) 2 downregulation, with ACE/ACE2 ratio increase, ANP decrease, as well as with glomerular pro-oxidative and profibrotic changes. CONCLUSIONS: Aldosterone damages not only the structure but also the function of the glomerulus. ACE/ACE2 upregulation, ACE2 and ANP downregulation, and pro-oxidative and profibrotic changes are possible mechanisms accounting for aldosterone-induced glomerular injury.
Resumo:
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the topdown effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire.We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function.
Resumo:
Integrins are heterodimeric, signaling transmembrane adhesion receptors that connect the intracellular actin microfilaments to the extracellular matrix composed of collagens and other matrix molecules. Bidirectional signaling is mediated via drastic conformational changes in integrins. These changes also occur in the integrin αI domains, which are responsible for ligand binding by collagen receptor and leukocyte specific integrins. Like intact integrins, soluble αI domains exist in the closed, low affinity form and in the open, high affinity form, and so it is possible to use isolated αI domains to study the factors and mechanisms involved in integrin activation/deactivation. Integrins are found in all mammalian tissues and cells, where they play crucial roles in growth, migration, defense mechanisms and apoptosis. Integrins are involved in many human diseases, such as inflammatory, cardiovascular and metastatic diseases, and so plenty of effort has been invested into developing integrin specific drugs. Humans have 24 different integrins, four of which are collagen receptor (α1β1, α2β1, α10β1, α11β1) and five leukocyte specific integrins (αLβ2, αMβ2, αXβ2, αDβ2, αEβ7). These two integrin groups are quite unselective having both primary and secondary ligands. This work presents the first systematic studies performed on these integrin groups to find out how integrin activation affects ligand binding and selectivity. These kinds of studies are important not only for understanding the partially overlapping functions of integrins, but also for drug development. In general, our results indicated that selectivity in ligand recognition is greatly reduced upon integrin activation. Interestingly, in some cases the ligand binding properties of integrins have been shown to be cell type specific. The reason for this is not known, but our observations suggest that cell types with a higher integrin activation state have lower ligand selectivity, and vice versa. Furthermore, we solved the three-dimensional structure for the activated form of the collagen receptor α1I domain. This structure revealed a novel intermediate conformation not previously seen with any other integrin αI domain. This is the first 3D structure for an activated collagen receptor αI domain without ligand. Based on the differences between the open and closed conformation of the αI domain we set structural criteria for a search for effective collagen receptor drugs. By docking a large number of molecules into the closed conformation of the α2I domain we discovered two polyketides, which best fulfilled the set structural criteria, and by cell adhesion studies we showed them to be specific inhibitors of the collagen receptor integrins.
Resumo:
The participation of the kallikrein-kinin system, comprising the serine proteases kallikreins, the protein substrates kininogens and the effective peptides kinins, in some pathological processes like hypertension and cardiovascular diseases is still a matter of controversy. The use of different experimental set-ups in concert with the development of potent and specific inhibitors and antagonists for the system has highlighted its importance but the results still lack conclusivity. Over the last few years, transgenic and gene-targeting technologies associated with molecular biology tools have provided specific information about the elusive role of the kallikrein-kinin system in the control of blood pressure and electrolyte homeostasis. cDNA and genomic sequences for kinin receptors B2 and B1 from different species were isolated and shown to encode G-protein-coupled receptors and the structure and pharmacology of the receptors were characterized. Transgenic animals expressing an overactive kallikrein-kinin system were established to study the cardiovascular effects of these alterations and the results of these investigations further corroborate the importance of this system in the maintenance of normal blood pressure. Knockout animals for B2 and B1 receptors are available and their analysis also points to the role of these receptors in cardiovascular regulation and inflammatory processes. In this paper the most recent and relevant genetic animal models developed for the study of the kallikrein-kinin system are reviewed, and the advances they brought to the understanding of the biological role of this system are discussed.