856 resultados para Structural Engineering Students


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational advantages of the use of different approaches -numerical and analytical ones- to the analysis of different parts of the same shell structure are discussed. Examples of large size problems that can be reduced to those more suitable to be handled by a personal related axisyrometric finite elements, local unaxisymmetric shells, geometric quasi-regular shells, infinite elements and homogenization techniques are described

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specific numerical procedure for the analysis of arbitrary nonprismatic folded plate structures is presented. An elastic model is studied and compared with a harmonic solution for a prismatic structure. An extension to the plastic analysis is developed, and the influence of the structural geometry and loading pattern is analyzed. Nonprismatic practical cases, with arbitrary geometry and loading are shown, as well in the elastic range as in the plastic one. Finally, a dynamic formulation is outlined

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing evaluation models for higher education have, mainly, accreditation purposes, and evaluate the efficiency of training programs, that is to say, the degree of suitability between the educational results and the objectives of the program. However, it is not guaranteed that those objectives adequate to the needs and real interests of students and stakeholders, that is to say, they do not assess the relevance of the programs, a very important aspect in developing countries. From the review of experiences, this paper proposes a model for evaluating the relevance of engineering masters program, and applies it to the case of a master?s degree at the University of Piura, Peru. We conclude that the proposed model is applicable to other masters program, offers an objective way for determining is a training program keep being relevant, and identifies improvement opportunities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los procesos de diseño y construcción en Arquitectura han mostrado un desarrollo de optimización históricamente muy deficiente cuando se compara con las restantes actividades típicamente industriales. La aspiración constante a una industrialización efectiva, tanto en aras de alcanzar mayores cotas de calidad así como de ahorro de recursos, recibe hoy una oportunidad inmejorable desde el ámbito informático: el Building Information Modelling o BIM. Lo que en un inicio puede parecer meramente un determinado tipo de programa informático, en realidad supone un concepto de “proceso” que subvierte muchas rutinas hoy habituales en el desarrollo de proyectos y construcciones arquitectónicas. La inclusión y desarrollo de datos ligados al proyecto, desde su inicio hasta el fin de su ciclo de vida, conlleva la oportunidad de crear una realidad virtual dinámica y actualizable, que por añadidura posibilita su ensayo y optimización en todos sus aspectos: antes y durante su ejecución, así como vida útil. A ello se suma la oportunidad de transmitir eficientemente los datos completos de proyecto, sin apenas pérdidas o reelaboración, a la cadena de fabricación, lo que facilita el paso a una industrialización verdaderamente significativa en edificación. Ante una llamada mundial a la optimización de recursos y el interés indudable de aumentar beneficios económicos por medio de la reducción del factor de incertidumbre de los procesos, BIM supone un opción de mejora indudable, y así ha sido reconocido a través de la inminente implantación obligatoria por parte de los gobiernos (p. ej. Gran Bretaña en 2016 y España en 2018). La modificación de procesos y roles profesionales que conlleva la incorporación de BIM resulta muy significativa y marcará el ejercicio profesional de los futuros graduados en las disciplinas de Arquitectura, Ingeniería y Construcción (AEC por sus siglas en inglés). La universidad debe responder ágilmente a estas nuevas necesidades incorporando esta metodología en la enseñanza reglada y aportando una visión sinérgica que permita extraer los beneficios formativos subyacentes en el propio marco BIM. En este sentido BIM, al aglutinar el conjunto de datos sobre un único modelo virtual, ofrece un potencial singularmente interesante. La realidad tridimensional del modelo, desarrollada y actualizada continuamente, ofrece al estudiante una gestión radicalmente distinta de la representación gráfica, en la que las vistas parciales de secciones y plantas, tan complejas de asimilar en los inicios de la formación universitaria, resultan en una mera petición a posteriori, para ser extraída según necesidad del modelo virtual. El diseño se realiza siempre sobre el propio modelo único, independientemente de la vista de trabajo elegida en cada momento, permaneciendo los datos y sus relaciones constructivas siempre actualizados y plenamente coherentes. Esta descripción condensada de características de BIM preconfiguran gran parte de las beneficios formativos que ofrecen los procesos BIM, en especial, en referencia al desarrollo del diseño integrado y la gestión de la información (incluyendo TIC). Destacan a su vez las facilidades en comprensión visual de elementos arquitectónicos, sistemas técnicos, sus relaciones intrínsecas así como procesos constructivos. A ello se une el desarrollo experimental que la plataforma BIM ofrece a través de sus software colaborativos: la simulación del comportamiento estructural, energético, económico, entre otros muchos, del modelo virtual en base a los datos inherentes del proyecto. En la presente tesis se describe un estudio de conjunto para explicitar tanto las cualidades como posibles reservas en el uso de procesos BIM, en el marco de una disciplina concreta: la docencia de la Arquitectura. Para ello se ha realizado una revisión bibliográfica general sobre BIM y específica sobre docencia en Arquitectura, así como analizado las experiencias de distintos grupos de interés en el marco concreto de la enseñanza de la en Arquitectura en la Universidad Europea de Madrid. El análisis de beneficios o reservas respecto al uso de BIM se ha enfocado a través de la encuesta a estudiantes y la entrevista a profesionales AEC relacionados o no con BIM. Las conclusiones del estudio permiten sintetizar una implantación de metodología BIM que para mayor claridad y facilidad de comunicación y manejo, se ha volcado en un Marco de Implantación eminentemente gráfico. En él se orienta sobre las acciones docentes para el desarrollo de competencias concretas, valiéndose de la flexibilidad conceptual de los Planes de Estudio en el contexto del Espacio Europeo de Educación Superior (Declaración de Bolonia) para incorporar con naturalidad la nueva herramienta docente al servicio de los objetivos formativo legalmente establecidos. El enfoque global del Marco de Implementación propuesto facilita la planificación de acciones formativas con perspectiva de conjunto: combinar los formatos puntuales o vehiculares BIM, establecer sinergias transversales y armonizar recursos, de modo que la metodología pueda beneficiar tanto la asimilación de conocimientos y habilidades establecidas para el título, como el propio flujo de aprendizaje o learn flow BIM. Del mismo modo reserva, incluso visualmente, aquellas áreas de conocimiento en las que, al menos en la planificación actual, la inclusión de procesos BIM no se considera ventajosa respecto a otras metodologías, o incluso inadecuadas para los objetivos docentes establecidos. Y es esta última categorización la que caracteriza el conjunto de conclusiones de esta investigación, centrada en: 1. la incuestionable necesidad de formar en conceptos y procesos BIM desde etapas muy iniciales de la formación universitaria en Arquitectura, 2. los beneficios formativos adicionales que aporta BIM en el desarrollo de competencias muy diversas contempladas en el currículum académico y 3. la especificidad del rol profesional del arquitecto que exigirá una implantación cuidadosa y ponderada de BIM que respete las metodologías de desarrollo creativo tradicionalmente efectivas, y aporte valor en una reorientación simbiótica con el diseño paramétrico y fabricación digital que permita un diseño finalmente generativo. ABSTRACT The traditional architectural design and construction procedures have proven to be deficient where process optimization is concerned, particularly when compared to other common industrial activities. The ever‐growing strife to achieve effective industrialization, both in favor of reaching greater quality levels as well as sustainable management of resources, has a better chance today than ever through a mean out of the realm of information technology, the Building Information Modelling o BIM. What may initially seem to be merely another computer program, in reality turns out to be a “process” concept that subverts many of today’s routines in architectural design and construction. Including and working with project data from the very beginning to the end of its full life cycle allows for creating a dynamic and updatable virtual reality, enabling data testing and optimizing throughout: before and during execution, all the way to the end of its lifespan. In addition, there is an opportunity to transmit complete project data efficiently, with hardly any loss or redeveloping of the manufacture chain required, which facilitates attaining a truly significant industrialization within the construction industry. In the presence of a world‐wide call for optimizing resources, along with an undeniable interest in increasing economic benefits through reducing uncertainty factors in its processes, BIM undoubtedly offers a chance for improvement as acknowledged by its imminent and mandatory implementation on the part of governments (for example United Kingdom in 2016 and Spain in 2018). The changes involved in professional roles and procedures upon incorporating BIM are highly significant and will set the course for future graduates of Architecture, Engineering and Construction disciplines (AEC) within their professions. Higher Education must respond to such needs with swiftness by incorporating this methodology into their educational standards and providing a synergetic vision that focuses on the underlying educational benefits inherent in the BIM framework. In this respect, BIM, in gathering data set under one single virtual model, offers a uniquely interesting potential. The three‐dimensional reality of the model, under continuous development and updating, provides students with a radically different graphic environment, in which partial views of elevation, section or plan that tend characteristically to be difficult to assimilate at the beginning of their studies, become mere post hoc requests to be ordered when needed directly out the virtual model. The design is always carried out on the sole model itself, independently of the working view chosen at any particular moment, with all data and data relations within construction permanently updated and fully coherent. This condensed description of the features of BIM begin to shape an important part of the educational benefits posed by BIM processes, particularly in reference to integrated design development and information management (including ITC). At the same time, it highlights the ease with which visual understanding is achieved regarding architectural elements, technology systems, their intrinsic relationships, and construction processes. In addition to this, there is the experimental development the BIM platform grants through its collaborative software: simulation of structural, energetic, and economic behavior, among others, of the virtual model according to the data inherent to the project. This doctoral dissertation presents a broad study including a wide array of research methods and issues in order to specify both the virtues and possible reservations in the use of BIM processes within the framework of a specific discipline: teaching Architecture. To do so, a literature review on BIM has been carried out, specifically concerning teaching in the discipline of Architecture, as well as an analysis of the experience of different groups of interest delimited to Universidad Europea de Madrid. The analysis of the benefits and/or limitations of using BIM has been approached through student surveys and interviews with professionals from the AEC sector, associated or not, with BIM. Various diverse educational experiences are described and academic management for experimental implementation has been analyzed. The conclusions of this study offer a synthesis for a Framework of Implementation of BIM methodology, which in order to reach greater clarity, communication ease and user‐friendliness, have been posed in an eminently graphic manner. The proposed framework proffers guidance on teaching methods conducive to the development of specific skills, taking advantage of the conceptual flexibility of the European Higher Education Area guidelines based on competencies, which naturally facilitate for the incorporation of this new teaching tool to achieve the educational objectives established by law. The global approach of the Implementation Framework put forth in this study facilitates the planning of educational actions within a common perspective: combining exceptional or vehicular BIM formats, establishing cross‐disciplinary synergies, and sharing resources, so as to purport a methodology that contributes to the assimilation of knowledge and pre‐defined competencies within the degree program, and to the flow of learning itself. At the same time, it reserves, even visually, those areas of knowledge in which the use of BIM processes is not considered necessarily an advantage over other methodologies, or even inadequate for the learning outcomes established, at least where current planning is concerned. It is this last category which characterizes the research conclusions as a whole, centering on: 1. The unquestionable need for teaching BIM concepts and processes in Architecture very early on, in the initial stages of higher education; 2. The additional educational benefits that BIM offers in a varied array of competency development within the academic curriculum; and 3. The specific nature of the professional role of the Architect, which demands a careful and balanced implementation of BIM that respects the traditional teaching methodologies that have proven effective and creative, and adds value by a symbiotic reorientation merged with parametric design and digital manufacturing so to enable for a finally generative design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Mindlin plate with periodically distributed ribs patterns is analyzed by using homogenization techniques based on asymptotic expansion methods. The stiffness matrix of the homogenized plate is found to be dependent on the geometrical characteristics of the periodical cell, i.e. its skewness, plan shape, thickness variation etc. and on the plate material elastic constants. The computation of this plate stiffness matrix is carried out by averaging over the cell domain some solutions of different periodical boundary value problems. These boundary value problems are defined in variational form by linear first order differential operators on the cell domain and the boundary conditions of the variational equation correspond to a periodic structural problem. The elements of the stiffness matrix of homogenized plate are obtained by linear combinations of the averaged solution functions of the above mentioned boundary value problems. Finally, an illustrative example of application of this homogenization technique to hollowed plates and plate structures with ribs patterns regularly arranged over its area is shown. The possibility of using in the profesional practice the present procedure to the actual analysis of floors of typical buildings is also emphasized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ligand-specific molecular switches composed of RNA were created by coupling preexisting catalytic and receptor domains via structural bridges. Binding of ligand to the receptor triggers a conformational change within the bridge, and this structural reorganization dictates the activity of the adjoining ribozyme. The modular nature of these tripartite constructs makes possible the rapid construction of precision RNA molecular switches that trigger only in the presence of their corresponding ligand. By using similar enzyme engineering strategies, new RNA switches can be made to operate as designer molecular sensors or as a new class of genetic control elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein–protein interacting surfaces are usually large and intricate, making the rational design of small mimetics of these interfaces a daunting problem. On the basis of a structural similarity between the CDR2-like loop of CD4 and the β-hairpin region of a short scorpion toxin, scyllatoxin, we transferred the side chains of nine residues of CD4, central in the binding to HIV-1 envelope glycoprotein (gp120), to a structurally homologous region of the scorpion toxin scaffold. In competition experiments, the resulting 27-amino acid miniprotein inhibited binding of CD4 to gp120 with a 40 μM IC50. Structural analysis by NMR showed that both the backbone of the chimeric β-hairpin and the introduced side chains adopted conformations similar to those of the parent CD4. Systematic single mutations suggested that most CD4 residues from the CDR2-like loop were reproduced in the miniprotein, including the critical Phe-43. The structural and functional analysis performed suggested five additional mutations that, once incorporated in the miniprotein, increased its affinity for gp120 by 100-fold to an IC50 of 0.1–1.0 μM, depending on viral strains. The resulting mini-CD4 inhibited infection of CD4+ cells by different virus isolates. Thus, core regions of large protein–protein interfaces can be reproduced in miniprotein scaffolds, offering possibilities for the development of inhibitors of protein–protein interactions that may represent useful tools in biology and in drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limited solubility and precipitation of amyloidogenic sequences such as the Alzheimer peptide (β-AP) are major obstacles to a molecular understanding of protein fibrillation and deposition processes. Here we have circumvented the solubility problem by stepwise engineering a β-AP homology into a soluble scaffold, the monomeric protein S6. The S6 construct with the highest β-AP homology crystallizes as a tetramer that is linked by the β-AP residues forming intermolecular antiparallel β-sheets. This construct also shows increased coil aggregation during refolding, and a 14-mer peptide encompassing the engineered sequence forms fibrils. Mutational analysis shows that intermolecular association is linked to the overall hydrophobicity of the sticky sequence and implies the existence of “structural gatekeepers” in the wild-type protein, that is, charged side chains that prevent aggregation by interrupting contiguous stretches of hydrophobic residues in the primary sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The (β/α)8 barrel is the most commonly occurring fold among protein catalysts. To lay a groundwork for engineering novel barrel proteins, we investigated the amino acid sequence restrictions at 182 structural positions of the prototypical (β/α)8 barrel enzyme triosephosphate isomerase. Using combinatorial mutagenesis and functional selection, we find that turn sequences, α-helix capping and stop motifs, and residues that pack the interface between β-strands and α-helices are highly mutable. Conversely, any mutation of residues in the central core of the β-barrel, β-strand stop motifs, and a single buried salt bridge between amino acids R189 and D227 substantially reduces catalytic activity. Four positions are effectively immutable: conservative single substitutions at these four positions prevent the mutant protein from complementing a triosephosphate isomerase knockout in Escherichia coli. At 142 of the 182 positions, mutation to at least one amino acid of a seven-letter amino acid alphabet produces a triosephosphate isomerase with wild-type activity. Consequently, it seems likely that (β/α)8 barrel structures can be encoded with a subset of the 20 amino acids. Such simplification would greatly decrease the computational burden of (β/α)8 barrel design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of rationally engineering protein molecules can be simplified where effects of mutations on protein function are additive. Crystal structures of single and double mutants in the hydrophobic core of gene V protein indicate that structural and functional effects of core mutations are additive when the regions structurally influenced by the mutations do not substantially overlap. These regions of influence can provide a simple basis for identifying sets of mutations that will show additive effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although it may sound reasonable that American education continues to be more effective at sending high school students to college, in a study conducted in 2009, The Council of the Great City Schools states that "slightly more than half of entering ninth grade students arrive performing below grade level in reading and math, while one in five entering ninth grade students is more than two years behind grade level...[and] 25% received support in the form of remedial literacy instruction or interventions" (Council of the Great City Schools, 2009). Students are distracted with technology (Lei & Zhao, 2005), family (Xu & Corno, 2003), medical illnesses (Nielson, 2009), learning disabilities and perhaps the most detrimental to academic success, the very lack of interest in school (Ruch, 1963). In a Johns Hopkins research study, Building a Graduation Nation - Colorado (Balfanz, 2008), warning signs were apparent years before the student dropped out of high school. The ninth grade was often referenced as a critical point that indicated success or failure to graduate high school. The research conducted by Johns Hopkins illustrates the problem: students who become disengaged from school have a much greater chance of dropping out of high school and not graduating. The first purpose of this study was to compare different measurement models of the Student School Engagement (SSE) using Factor Analysis to verify model fit with student engagement. The second purpose was to determine the extent to which the SSE instrument measures student school engagement by investigating convergent validity (via the SSE and Appleton, Christenson, Kim and Reschly's instrument and Fredricks, Blumenfeld, Friedel and Paris's instrument), discriminant validity (via Huebner's Student Life Satisfaction Survey) and criterion-related validity (via the sub-latent variables of Aspirations, Belonging and Productivity and student outcome measures such as achievement, attendance and discipline). Discriminant validity was established between the SSE and the Appleton, Christenson, Kim and Reschly's model and Fredricks, Blumenfeld, Friedel and Paris's (2005) Student Engagement Instruments (SEI). When confirming discriminant validity, the SSE's correlations were weak and statistically not significant, thus establishing discriminant validity with the SLSS. Criterion-related validity was established through structural equation modeling when the SSE was found to be a significant predictor of student outcome measures when both risk score and CSAP scores were used. The third purpose of this study was to assess the factorial invariance of the SSE instrument across gender to ensure the instrument is measuring the intended construct across different groups. Conclusively, configural, weak and metric invariances were established for the SSE as a non-significant change in chi-square indicating that all parameters including the error variances were invariant across groups of gender. Engagement is not a clearly defined psychological construct; it requires more research in order to fully comprehend its complexity. Hopefully, with parental and teacher involvement and a sense of community, student engagement can be nurtured to result in a meaningful attachment to school and academic success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, several explanatory models have been developed which attempt to analyse the predictive worth of various factors in relation to academic achievement, as well as the direct and indirect effects that they produce. The aim of this study was to examine a structural model incorporating various cognitive and motivational variables which influence student achievement in the two basic core skills in the Spanish curriculum: Spanish Language and Mathematics. These variables included differential aptitudes, specific self-concept, goal orientations, effort and learning strategies. The sample comprised 341 Spanish students in their first year of Compulsory Secondary Education. Various tests and questionnaires were used to assess each student, and Structural Equation Modelling (SEM) was employed to study the relationships in the initial model. The proposed model obtained a satisfactory fit for the two subjects studied, and all the relationships hypothesised were significant. The variable with the most explanatory power regarding academic achievement was mathematical and verbal aptitude. Also notable was the direct influence of specific self-concept on achievement, goal-orientation and effort, as was the mediatory effect that effort and learning strategies had between academic goals and final achievement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Póster presentado en EDULEARN12, International Conference on Education and New Learning Technologies, Barcelona, 2nd-4th July 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reverse engineering is the process of discovering the technological principles of a device, object or system through analysis of its structure, function, and operation. From a device used in clinical practice, as the corneal topographer, reverse engineering will be used to infer physical principles and laws. In our case, reverse engineering involves taking this mechanical device apart and analyzing its working detail. The initial knowledge of the application and usefulness of the device provides a motivation that, together with the combination of theory and practice, will help the students to understand and learn concepts studied in different subjects in the Optics and Optometry degree. These subjects belong to both the core and compulsory subjects of the syllabus of first and second year of the degree. Furthermore, the experimental practice is used as transverse axis that relates theoretical concepts, technology transfer and research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the learning experiences and opinions from a group of undergraduate students in a course about Robotics. The contents of this course were taught as a set of seminars. In each seminar, the student learned interdisciplinary knowledge of computer science, control engineering, electronics and other fields related to Robotics. The aim of this course is that the students are able to design and implement their own and custom robotic solution for a series of tests planned by the teachers. These tests measure the behavior and mechatronic features of the students' robots. Finally, the students' robots are confronted with some competitions. In this paper, the low-cost robotic architecture used by the students, the contents of the course, the tests to compare the solutions of students and the opinion of them are amply discussed.