892 resultados para Stochastic Volatility
Resumo:
Price movements in many commodity markets exhibit significant seasonal patterns. However, given an observed futures price, a deterministic seasonal component at the price level is not relevant for the pricing of commodity options. In contrast, this is not true for the seasonal pattern observed in the volatility of the commodity price. Analyzing an extensive sample of soybean, corn, heating oil and natural gas options, we find that seasonality in volatility is an important aspect to consider when valuing these contracts. The inclusion of an appropriate seasonality adjustment significantly reduces pricing errors in these markets and yields more improvement in valuation accuracy than increasing the number of stochastic factors.
Resumo:
In this paper we study the stochastic behavior of the prices and volatilities of a sample of six of the most important commodity markets and we compare these properties with those of the equity market. we observe a substantial degree of heterogeneity in the behavior of the series. Our findings show that it is inappropriate to treat different kinds of commodities as a single asset class as is frequently the case in the academic literature and in the industry. We demonstrate that commodities can be a useful diversifier of equity volatility as well as equity returns. Options pricing and hedging applications exemplify the economic impacts of the differences across commodities and between model specifications.
Resumo:
This paper considers how trading volume impacts upon the first three moments of REIT returns. Consistent with previous studies of the broader stock market, we find that volume is a significant factor with respect to both returns and volatility. We also find evidence supportive of the Hong & Stein’s (2003) Investor Heterogeneity Theory with respect to the finding that skewness in REIT index returns is significantly related to volume. Furthermore, we also report findings that show the influence of the variability of volume with skewness.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
In this paper we provide an alternative explanation for why illegal immigration can exhibit substantial fluctuation. We develop a model economy in which migrants make decisions in the face of uncertain border enforcement and lump-sum transfers from the host country. The uncertainty is extrinsic in nature, a sunspot, and arises as a result of ambiguity regarding the commodity price of money. Migrants are restricted from participating in state-contingent insurance markets in the host country, whereas host country natives are not. Volatility in migration flows stems from two distinct sources: the tension between transfers inducing migration and enforcement discouraging it and secondly the existence of a sunspot. Finally, we examine the impact of a change in tax/transfer policies by the government on migration.
Resumo:
The recent roll-out of smart metering technologies in several developed countries has intensified research on the impacts of Time-of-Use (TOU) pricing on consumption. This paper analyses a TOU dataset from the Province of Trento in Northern Italy using a stochastic adjustment model. Findings highlight the non-steadiness of the relationship between consumption and TOU price. Weather and active occupancy can partly explain future consumption in relation to price.
Resumo:
In this article, we illustrate experimentally an important consequence of the stochastic component in choice behaviour which has not been acknowledged so far. Namely, its potential to produce ‘regression to the mean’ (RTM) effects. We employ a novel approach to individual choice under risk, based on repeated multiple-lottery choices (i.e. choices among many lotteries), to show how the high degree of stochastic variability present in individual decisions can distort crucially certain results through RTM effects. We demonstrate the point in the context of a social comparison experiment.
Resumo:
Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk. A quantile forecast is the product of two factors: the model used to forecast volatility, and the method of computing quantiles from the volatility forecasts. In this paper we calculate and evaluate quantile forecasts of the daily exchange rate returns of five currencies. The forecasting models that have been used in recent analyses of the predictability of daily realized volatility permit a comparison of the predictive power of different measures of intraday variation and intraday returns in forecasting exchange rate variability. The methods of computing quantile forecasts include making distributional assumptions for future daily returns as well as using the empirical distribution of predicted standardized returns with both rolling and recursive samples. Our main findings are that the Heterogenous Autoregressive model provides more accurate volatility and quantile forecasts for currencies which experience shifts in volatility, such as the Canadian dollar, and that the use of the empirical distribution to calculate quantiles can improve forecasts when there are shifts
Resumo:
In 2007 futures contracts were introduced based upon the listed real estate market in Europe. Following their launch they have received increasing attention from property investors, however, few studies have considered the impact their introduction has had. This study considers two key elements. Firstly, a traditional Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, the approach of Bessembinder & Seguin (1992) and the Gray’s (1996) Markov-switching-GARCH model are used to examine the impact of futures trading on the European real estate securities market. The results show that futures trading did not destabilize the underlying listed market. Importantly, the results also reveal that the introduction of a futures market has improved the speed and quality of information flowing to the spot market. Secondly, we assess the hedging effectiveness of the contracts using two alternative strategies (naïve and Ordinary Least Squares models). The empirical results also show that the contracts are effective hedging instruments, leading to a reduction in risk of 64 %.
Resumo:
This paper models the transmission of shocks between the US, Japanese and Australian equity markets. Tests for the existence of linear and non-linear transmission of volatility across the markets are performed using parametric and non-parametric techniques. In particular the size and sign of return innovations are important factors in determining the degree of spillovers in volatility. It is found that a multivariate asymmetric GARCH formulation can explain almost all of the non-linear causality between markets. These results have important implications for the construction of models and forecasts of international equity returns.
Resumo:
This paper uses appropriately modified information criteria to select models from the GARCH family, which are subsequently used for predicting US dollar exchange rate return volatility. The out of sample forecast accuracy of models chosen in this manner compares favourably on mean absolute error grounds, although less favourably on mean squared error grounds, with those generated by the commonly used GARCH(1, 1) model. An examination of the orders of models selected by the criteria reveals that (1, 1) models are typically selected less than 20% of the time.
Resumo:
This paper explores a number of statistical models for predicting the daily stock return volatility of an aggregate of all stocks traded on the NYSE. An application of linear and non-linear Granger causality tests highlights evidence of bidirectional causality, although the relationship is stronger from volatility to volume than the other way around. The out-of-sample forecasting performance of various linear, GARCH, EGARCH, GJR and neural network models of volatility are evaluated and compared. The models are also augmented by the addition of a measure of lagged volume to form more general ex-ante forecasting models. The results indicate that augmenting models of volatility with measures of lagged volume leads only to very modest improvements, if any, in forecasting performance.
Resumo:
This article examines the role of idiosyncratic volatility in explaining the cross-sectional variation of size- and value-sorted portfolio returns. We show that the premium for bearing idiosyncratic volatility varies inversely with the number of stocks included in the portfolios. This conclusion is robust within various multifactor models based on size, value, past performance, liquidity and total volatility and also holds within an ICAPM specification of the risk–return relationship. Our findings thus indicate that investors demand an additional return for bearing the idiosyncratic volatility of poorly-diversified portfolios.
Resumo:
In this paper, we study the role of the volatility risk premium for the forecasting performance of implied volatility. We introduce a non-parametric and parsimonious approach to adjust the model-free implied volatility for the volatility risk premium and implement this methodology using more than 20 years of options and futures data on three major energy markets. Using regression models and statistical loss functions, we find compelling evidence to suggest that the risk premium adjusted implied volatility significantly outperforms other models, including its unadjusted counterpart. Our main finding holds for different choices of volatility estimators and competing time-series models, underlying the robustness of our results.