838 resultados para Step length
Resumo:
We investigate dynamical effects of a bright soliton in Bose-Einstein condensed (BEC) systems with local and smooth space variations of the two-body atomic scattering length. It includes a discussion about the possible observation of a new type of standing nonlinear atomic matter wave in cigar-type traps. A rich dynamics is observed in the interaction between the soliton and an inhomogeneity. By considering an analytical time-dependent variational approach and also full numerical simulation of one-dimensional and three-dimensional Gross-Pitaevskii equations, we study processes such as trapping, reflection and transmission of the bright matter soliton due to the impurity. We also derive conditions for the collapse of the bright solitary wave, considering a quasi-one-dimensional BEC with attractive local inhomogeneity.
Resumo:
Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation, we study the oscillation of the Bose-Einstein condensate (BEC) induced by a periodic variation in the atomic scattering length a. When the frequency of oscillation of a is an even multiple of the radial or axial trap frequency, respectively, the radial or axial oscillation of the condensate exhibits resonance with a novel feature. In this nonlinear problem without damping, at resonance in the steady state the amplitude of oscillation passes through a maximum and minimum. Such a growth and decay cycle of the amplitude may keep on repeating. Similar behaviour is also observed in a rotating BEC.
Resumo:
Nonlinear oscillations of a 3D radial symmetric Bose-Einstein condensate under periodic variation in time of the atomic scattering length have been studied. The time-dependent variational approach is used for the analysis of the characteristics of nonlinear resonances in the oscillations of the condensate. The bistability in oscillations of the BEC width is investigated. The dependence of the BEC collapse threshold on the drive amplitude and parameters of the condensate and trap is found. Predictions of the theory are confirmed by numerical simulations of the full Gross-Pitaevskii equation.
Resumo:
The low-energy scattering of ortho positronium (Ps) by ortho Ps has been studied in a full quantum mechanical coupled-channel approach. In the singlet channel (total spin s(T) = 0) we find S- and P-wave resonances at 3.35 eV (width 0.02 eV) and 5.05 eV (width 0.04 eV), respectively, and a binding of 0.43 eV of Ps(2). The scattering length for s(T) = 0 is 3.95 Angstrom and for s(T) = 2 is 0.83 Angstrom. The small s(T) = 2 scattering length makes the spin-polarized ortho Ps atoms an almost noninteracting ideal gas which may undergo Bose-Einstein condensation. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We discuss two-dimensional Bose-Einstein Condensates (BEC) under time-periodic variation of the scattering length. In particular we argue that for high-frequency variation there exist stable self-confined condensates without an external trap, when the do component of the scattering length is negative. Our results are based on a variational approximation, on direct averaging of the Gross-Pitaevskii equation and on numerical simulations.
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
We study the macroscopic quantum tunneling, self-trapping phenomena in two weakly coupled Bose-Einstein condensates with periodically time-varying atomic scattering length.The resonances in the oscillations of the atomic populations are investigated. We consider oscillations in the cases of macroscopic quantum tunneling and the self-trapping regimes. The existence of chaotic oscillations in the relative atomic population due to overlaps between nonlinear resonances is showed. We derive the whisker-type map for the problem and obtain the estimate for the critical amplitude of modulations leading to chaos. The diffusion coefficient for motion in the stochastic layer near separatrix is calculated. The analysis of the oscillations in the rapidly varying case shows the possibility of stabilization of the unstable pi-mode regime. (C) 2000 Published by Elsevier B.V. B.V. PACS: 03.75.Fi; 05.30.Jp.
Resumo:
Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate (BEC) by a rapid periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC, the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
Resumo:
We report on investigations of the properties of bright solitons in Bose-Einstein condensates in the presence of point-like spatial inhomogeneities, in one and two dimensions. By considering an analytical variational approach and full numerical simulations, we describe such processes due to interactions between the soliton and the inhomogeneity as the trapping, reflection, and transmission of bright matter solitons. We also study the critical number of particles as a function of the magnitude of the impurity.
Resumo:
We study certain stationary and time-evolution problems of trapped Bose-Einstein condensates using the numerical solution of the Gross-Pitaevskii (GP) equation with both spherical and axial symmetries. We consider time-evolution problems initiated by suddenly changing the interatomic scattering length or harmonic trapping potential in a stationary condensate. These changes introduce oscillations in the condensate which are studied in detail. We use a time iterative split-step method for the solution of the time-dependent GP equation, where all nonlinear and linear non-derivative terms are treated separately from the time propagation with the kinetic energy terms. Even for an arbitrarily strong nonlinear term this leads to extremely accurate and stable results after millions of time iterations of the original equation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Racional - A fundoplicatura total, procedimento empregado no tratamento da doença do refluxo gastroesofágico, pode ser realizada segundo duas técnicas de abordagem: laparotômica e laparoscópica. Objetivo - Analisar o esfíncter inferior do esôfago de coelhos submetidos a fundoplicatura total laparotômica e laparoscópica. Material e Métodos - em 40 coelhos machos foram realizados estudos eletromanométricos do esôfago segundo a técnica de puxada intermitente da sonda e infusão contínua dos cateteres com água destilada. Estes estudos permitiram a análise de dois parâmetros: amplitude da pressão no esfíncter inferior do esôfago (mm Hg) e comprimento do esfíncter inferior do esôfago em condições basais (momento 1). Os 40 animais foram divididos em quatro grupos de 10, na dependência do procedimento cirúrgico realizado: grupo 1: fundoplicatura total laparotômica; grupo 2: laparotomia mediana e dissecção da transição gastroesofágica; grupo 3: fundoplicatura total laparoscópica; grupo 4: pneumoperitônio e dissecção da transição gastroesofágica. No momento 2 (1 semana após os procedimento cirúrgicos) foram realizados estudos eletromanométricos do esôfago em todos os animais. Resultados - Nos animais do grupo 1 (fundoplicatura laparotômica) e do grupo 3, foi observado aumento da amplitude da pressão e do comprimento do esfíncter inferior do esôfago. Naqueles dos grupos 2 e 4, não foi observada alteração da amplitude e do comprimento do esfíncter inferior do esôfago. Conclusões - A fundoplicatura interfere na barreira anti-refluxo gastroesofágica, tornando-a mais eficiente, uma vez que a pressão e o comprimento do esfíncter inferior do esôfago elevam-se no pós-operatório desta intervenção. Este efeito foi observado nas duas técnicas de abordagem estudadas, laparotômica e laparoscópica.
Resumo:
Os comprimentos das peças que constituem o aparelho bucal, glossa, paraglossa, estipite, gálea, palpo labial, palpo maxilar, cardo, lorum, mento e pré-mento foram estudados a nível unidimensional em abelhas caucasianas, africanizadas e nos descendentes F1. Somente a paraglossa, estipite, gálea, palpo maxilar, mento e pré-mento mostraram ser diferentes entre esses 2 tipos de abelhas. Essas 6 variáveis foram estudadas nos descendentes F1, tendo sido utilizados 2 tipos de cruzamentos: rainhas caucasianas x machos africanizados (cruzamento 1) e rainhas africanizadas x machos caucasianos (cruzamento 2). Análises multidimensionais também foram realizadas, tendo sido obtidas as distâncias generalizadas de Mahalanobis (D2) entre os parentais e os descendentes F1. Tanto nas análises unidimensionais como nas multidimensionais houve aparente dominância das abelhas africanizadas, mas o número de genes não pôde ser conhecido porque só havia a geração F1 e não houve controle da heterozigosidade das 2 colônias parentais. Os cálculos dos coeficientes de correlações de Spearman mostraram que as abelhas com glossae mais longas coletaram mais xarope de açúcar e voaram mais lentamente da colônia para a fonte de alimento.