979 resultados para Steel-concrete bonding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloride ion penetration through concrete to reinforcing steel is causing the premature deterioration of numerous bridge decks in Iowa. The purpose of the research reported in this paper was to determine whether any of several additives or alternative deicing chemicals could inhibit corrosion of reinforcing steel. The deicers tested were calcium magnesium acetate (CMA), CMA plus NaCl (NaCl: sodium chloride), Quicksalt plus PCI, and CG-90, a polyphosphate solution being developed by Cargill. Two tests were established. First, steel coupons were placed in a 15% solution of a deicer and distilled water to determine which alternative deicer would cause the least amount of corrosion in solution. The coupons were weighed periodically to determine each coupon's weight loss from corrosion. The second test involved ponding a 15% solution of each material on reinforced concrete blocks. Weekly copper-copper sulfate electrical half-cell (CSE) potential readings were taken on each block to determine whether corrosive activity was occurring at the steel surface. When the ponding research was concluded, concrete samples were taken from one of the three blocks ponded with each deicer. The samples were used to determine the chloride ion content at the level of the steel. Results show that all the deicers were less corrosive than NaCl. Only pure CMA, however, significantly inhibited the corrosion of steel embedded in concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten bridges were chosen to have their concrete barrier rails constructed with one rail having "Fibermesh" synthetic fibers added and the other rail without the fibers. The rails were constructed in 1985, 1986, or 1987. All the bridges were inspected in 1988 and no consistent reduction in cracking was achieved using Fibermesh fibers in the p.c. concrete bridge barrier rails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crack formation has been a problem on some recently constructed bridges in Iowa. Drying shrinkage has been considered a contributing factor in that cracking. The study was undertaken to evaluate some of those material properties that contribute to the magnitude of drying shrinkage. Cement content, cement composition, fly ash and retarding admixture were the factors studied. Concrete prisms were cast for seven mixes and, after curing, were exposed to 100 deg F heat at ambient humidity for 280 days. The following were observed from the testing: (1) Higher C3A content cement concrete produced larger shrinkage; (2) Use of fly ash increased shrinkage; (3) Use of retarder increased shrinkage; and (4) Lowering the cement content reduced the shrinkage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report summarizes the findings of a research which was intended to evaluate the concrete strength and opening time for the full depth patching projects in Iowa under cold weather and whether or not cold water could be allowed in the mix. This research was performed both in the laboratory and in the field. The results indicated that with the present specification the concrete strength after five hours for two-lane patches which requires hot water and calcium chloride is about 1,600 psi. Hence, if a higher strength is desired, a longer curing time is required. Hot water will have to be used and water reducer is not recommended for two-lane patches. On the other hand, the concrete strength for multi-lane patches with either hot or cold water approaches 4,000 psi in less than 24 hours. There was only a slight difference in compressive strengths between the 24-hour and 36-hours curing times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation has noticed an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements can be observed in several sections of PCC highways across the state of Iowa. Also, excessive vibration is believed to be a factor in the premature deterioration of several pavements in Iowa. To address the problem of excessive vibration, a research project was conducted to document the vibratory practices of PCC slipform paving in Iowa and determine the effect of vibration on the air content of pavement. The primary factors studied were paver speed, vibrator frequency, and air content relative to the location of the vibrator. The study concluded that the Iowa Department of Transportation specification of 5000 and 8000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds observed on the three test paving projects. Excessive vibration was clearly identified on one project where a vibrator frequency was found to be 12,000 vpm. When the paver speed was reduced to half the normal speed, hard air contents indicated that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8000 vpm. Analysis of variance testing indicated many variables and interactions to be significant at a 95% confidence level; however, the variables and interactions that were found to be significant varied from project to project. This affirms the complexity of the process for consolidating PCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation has discovered an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements has been observed in several projects across the state. Overconsolidation is also believed to be a factor in acceleration of premature deterioration of at least two pavement projects in Iowa. To address the problem, a research project in 1995 documented the vibratory practices of PCC slipform paving in Iowa in order to determine the effect of vibration on consolidation and air content of pavement. Paver speed, vibrator frequency, and air content relative to the location of the vibrator were studied. The study concluded that the Iowa Department of Transportation specification of 5,000 to 8,000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds on the three projects that were examined. Excessive vibration was clearly identified on one project where a vibrator frequency of 12,000 vpm was discovered. When the paver speed was reduced to half the normal speed, hard air contents indicate that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8,000 vpm. The study also indicates that the radius of influence of the vibrators is smaller than has been claimed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to an equipment malfunction, too much sand was used in the concrete on the bridge floor placed on August 9, 1994, in Washington County, Project No. BRF-22-2(36)38-92. Freeze-thaw durability testing of cores taken from the concrete in question and the other two concretes not in question was performed. The experimental results indicate that the concrete in question is considered at least as durable and resistant to freeze-thaw damage as the concretes which are not in question. The concrete in question can be expected to function properly for the regular service life of the bridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Class A, B, and C concrete paving mixes were tested for compressive strength at 40°F and 73°F, both with and without fly ash substitution for 15% of the portland cement. Two Class C ashes and one Class F ash from Iowa approved sources were examined in each mix. The purpose of the study was to provide data on cool weather strength development of concrete paving mixes utilizing Iowa materials. In all cases except one, the fly ash concretes exhibited lower 7 and 28- day compressive strengths at 40°F than control mixes. The continuation of the October 15 cut-off date for the use of fly ash concrete is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the study was to evaluate the shear bond strength of stainless steel orthodontic brackets directly bonded to extracted human premolar teeth. Fifty teeth were randomly divided into ¿ve groups: (1) System One (chemically cured composite resin), (2) Light Bond (light-cured composite resin), (3) Vivaglass Cem (self-curing glass ionomer cement), (4) Fuji Ortho LC (light-cured glass ionomer cement) used after 37% orthophosphoric acid¿etching of enamel (5) Fuji Ortho LC without orthophosphoric acid¿etching. The brackets were placed on the buccal and lingual surfaces of each tooth, and the specimens were stored in distilled water (24 hours) at 378C and thermocycled. Teeth were mounted on acrylic block frames, and brackets were debonded using an Instron machine. Shear bond strength values at fracture (Nw)were recorded. ANOVA and Student-Newman-Keuls multiple comparison tests were performed (P , .05). Bonding failure site was recorded by stereomicroscope and analyzed by Chi-square test, selected specimens of each group were observed by scanning electron microscope. System One attained the highest bond strength. Light Bond and Fuji Ortho LC, when using an acid-etching technique, obtained bond strengths that were within the range of estimated bond strength values for successful clinical bonding. Fuji Ortho LC and Vivaglass Cem left an almost clean enamel surface after debracketing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The durability of concrete is a most important aspect in pavement life. Deterioration of the interstate portland cement concrete pavement has prompted various studies of factors which may contribute to the durability. Studies of cores taken from deteriorated areas indicated that the larger particles of coarse aggregate may contribute greatly to the problem. This indication was mainly due to the analysis of the cracking pattern which showed that most of the cracks passed through the larger aggregates and the larger aggregate particles were more cracked than the smaller particles. The purpose of this project is to determine if the size of the coarse aggregate has a bearing on the durability of freeze and thaw beams. A secondary purpose of this project is to determine what effect the method of curing and proportions have on the durability of freeze and thaw beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main sources of coarse aggregate for secondary slip form paving in Southwest Iowa exhibit undesirable "D" cracking. "D" cracking is a discoloration of the concrete caused by fine, hairline cracks. These cracks are caused by the freezing and thawing of moisture inside the coarse aggregate. The cracks are often hour glass shaped, are parallel to each other, and occur along saw joints. The B-4, a typical secondary mix, utilizes 50% fine aggregate and 50% coarse aggregate. It has been proposed that a concrete mix with less coarse aggregate and more fine aggregate might impede this type of deterioration. The Nebraska Standard 47B Mix, a 70% fine aggregate, and 30% coarse aggregate mix, as used by Nebraska Department of Roads produces concrete with ultimate strengths in excess of 4500 psi but because of the higher cost of cement (it is a six bag per cubic yard mix) is not competitive with our present secondary mixes. The sands of Southwest Iowa generally have poorer mortar strengths than the average Iowa Sand. Class V Aggregate also found in Southwest Iowa has a coarser sand fraction, therefore it has a better mortar strength, but exhibits an acidic reaction and therefore must be·used with limestone. This illustrates the need to find a mix for use in Southwest Iowa that possesses adequate strength and satisfactory durability at a low cost. The purpose of this study is to determine a concrete mix with an acceptable cement content which will produce physical properties similar to that of our present secondary paving mixes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objectives of this research project were: 1. Determine and recommend solutions for problems relating to shipping, storing and batching of fly ash. 2. Establish a procedure for batching, mixing and placing uniform concrete with specified air content and consistency. 3. Demonstrate that concrete of comparable quality can be produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many times during the past four years we have seen ranges in the durability factor for a single coarse aggregate source that were too great to be explained by variations in the coarse aggregate alone. The durability test (ASTM C 666 Method B) as presently used is a test of the concrete system rather than that of a particular coarse aggregate. An informal study of current durability factor data indicates that w/c ratio and/or percentage of air may be critical to beam growth and durability factor. The purpose of this project, R-258, is to determine the extent w/c ratio and air content variations have on beam growth and durability factor when other factors including coarse aggregate gradation are held constant.