997 resultados para Stability Boundary
Resumo:
A theory for the description of turbulent boundary layer flows over surfaces with a sudden change in roughness is considered. The theory resorts to the concept of displacement in origin to specify a wall function boundary condition for a kappa-epsilon model. An approximate algebraic expression for the displacement in origin is obtained from the experimental data by using the chart method of Perry and Joubert(J.F.M., vol. 17, pp. 193-122, 1963). This expression is subsequently included in the near wall logarithmic velocity profile, which is then adopted as a boundary condition for a kappa-epsilon modelling of the external flow. The results are compared with the lower atmospheric observations made by Bradley(Q. J. Roy. Meteo. Soc., vol. 94, pp. 361-379, 1968) as well as with velocity profiles extracted from a set of wind tunnel experiments carried out by Avelino et al.( 7th ENCIT, 1998). The measurements are found to be in good agreement with the theoretical computations. The skin-friction coefficient was calculated according to the chart method of Perry and Joubert(J.F.M., vol. 17, pp. 193-122, 1963) and to a balance of the integral momentum equation. In particular, the growth of the internal boundary layer thickness obtained from the numerical simulation is compared with predictions of the experimental data calculated by two methods, the "knee" point method and the "merge" point method.
Resumo:
This paper deals with the use of the conjugate gradient method of function estimation for the simultaneous identification of two unknown boundary heat fluxes in parallel plate channels. The fluid flow is assumed to be laminar and hydrodynamically developed. Temperature measurements taken inside the channel are used in the inverse analysis. The accuracy of the present solution approach is examined by using simulated measurements containing random errors, for strict cases involving functional forms with discontinuities and sharp-corners for the unknown functions. Three different types of inverse problems are addressed in the paper, involving the estimation of: (i) Spatially dependent heat fluxes; (ii) Time-dependent heat fluxes; and (iii) Time and spatially dependent heat fluxes.
Resumo:
This paper presents an HP-Adaptive Procedure with Hierarchical formulation for the Boundary Element Method in 2-D Elasticity problems. Firstly, H, P and HP formulations are defined. Then, the hierarchical concept, which allows a substantial reduction in the dimension of equation system, is introduced. The error estimator used is based on the residual computation over each node inside an element. Finally, the HP strategy is defined and applied to two examples.
Resumo:
The present work shows how thick boundary layers can be produced in a short wind tunnel with a view to simulate atmospheric flows. Several types of thickening devices are analysed. The experimental assessment of the devices was conducted by considering integral properties of the flow and the spectra: skin-friction, mean velocity profiles in inner and outer co-ordinates and longitudinal turbulence. Designs based on screens, elliptic wedge generators, and cylindrical rod generators are analysed. The paper describes in detail the experimental arrangement, including the features of the wind tunnel and of the instrumentation. The results are compared with experimental data published by other authors and with naturally developed flows.
Resumo:
In two-phase miniature and microchannel flows, the meniscus shape must be considered due to effects that are affected by condensation and/or evaporation and coupled with the transport phenomena in the thin film on the microchannel wall, when capillary forces drive the working fluid. This investigation presents an analytical model for microchannel condensers with a porous boundary, where capillary forces pump the fluid. Methanol was selected as the working fluid. Very low liquid Reynolds numbers were obtained (Re~6), but very high Nusselt numbers (Nu~150) could be found due to the channel size (1.5 mm) and the presence of the porous boundary. The meniscus calculation provided consistent results for the vapor interface temperature and pressure, as well as the meniscus curvature. The obtained results show that microchannel condensers with a porous boundary can be used for heat dissipation with reduced heat transfer area and very high heat dissipation capabilities.
Resumo:
A study on the spatial distribution of the major weeds in maize was carried out in 2007 and 2008 in a field located in Golegã (Ribatejo region, Portugal). The geo-referenced sampling focused on 150 points of a 10 x 10 m mesh covering an area of 1.5 ha, before herbicide application and before harvest. In the first year, 40 species (21 botanical families) were identified at seedling stage and only 22 during the last observation. The difference in species richness can be attributed to maize monoculture favouring reduction in species number. Three of the most representative species were selected for the spatial distribution analysis: Solanum nigrum, Chenopodium album and Echinochloa crus-galli. The three species showed an aggregated spatial pattern and spatial stability over both years, although the herbicide effect is evident in the distribution of some of them in the space. These results could be taken into account when planning site-specific treatments in maize.
Resumo:
The stability of penicillin-binding protein 3 (PBP3), a cell septum synthesizing protein, was analyzed at different incubation temperatures in three Escherichia coli K12 strains carrying a PBP3-overproducing plasmid. The stability of PBP3 was significantly reduced in stationary phase cells shifted to 42°C for 4 h, compared to samples incubated at 28 or 37°C. The half-life of PBP3 in the C600 strain was 60 min at 42°C, while samples incubated at 28 or 37°C had PBP3 half-lives greater than 4 h. Analysis of the PBP3 content in mutants deficient in rpoS (coding for the stationary phase sigma factor, sigmaS) and rpoH (coding for the heat shock sigma factor, sigma32) genes after shift to 42°C showed that stability of the protein was controlled by sigmaS but not by sigma32. These results suggest that control of the PBP3 levels in E. coli K12 is through a post-transcriptional mechanism regulated by the stationary phase regulon. We demonstrated that stability of PBP3 in E. coli K12 involves degradation of the protein. Moreover, we observed that incubation of cells at 42°C significantly reduces the stability of PBP3 in early stationary phase cells in a process controlled by sigmaS.
Resumo:
In recent years, there have been studies that show a correlation between the hyperactivity of children and use of artificial food additives, including colorants. This has, in part, led to preference of natural products over products with artificial additives. Consumers have also become more aware of health issues. Natural food colorants have many bioactive functions, mainly vitamin A activity of carotenoids and antioxidativity, and therefore they could be more easily accepted by the consumers. However, natural colorant compounds are usually unstable, which restricts their usage. Microencapsulation could be one way to enhance the stability of natural colorant compounds and thus enable better usage for them as food colorants. Microencapsulation is a term used for processes in which the active material is totally enveloped in a coating or capsule, and thus it is separated and protected from the surrounding environment. In addition to protection by the capsule, microencapsulation can also be used to modify solubility and other properties of the encapsulated material, for example, to incorporate fat-soluble compounds into aqueous matrices. The aim of this thesis work was to study the stability of two natural pigments, lutein (carotenoid) and betanin (betalain), and to determine possible ways to enhance their stability with different microencapsulation techniques. Another aim was the extraction of pigments without the use of organic solvents and the development of previously used extraction methods. Stability of pigments in microencapsulated pigment preparations and model foods containing these were studied by measuring the pigment content after storage in different conditions. Preliminary studies on the bioavailability of microencapsulated pigments and sensory evaluation for consumer acceptance of model foods containing microencapsulated pigments were also carried out. Enzyme-assisted oil extraction was used to extract lutein from marigold (Tagetes erecta) flower without organic solvents, and the yield was comparable to solvent extraction of lutein from the same flowers. The effects of temperature, extraction time, and beet:water ratio on extraction efficiency of betanin from red beet (Beta vulgaris) were studied and the optimal conditions for maximum yield and maximum betanin concentration were determined. In both cases, extraction at 40 °C was better than extraction at 80 °C and the extraction for five minutes was as efficient as 15 or 30 minutes. For maximum betanin yield, the beet:water ratio of 1:2 was better, with possibly repeated extraction, but for maximum betanin concentration, a ratio of 1:1 was better. Lutein was incorporated into oil-in-water (o/w) emulsions with a polar oil fraction from oat (Avena sativa) as an emulsifier and mixtures of guar gum and xanthan gum or locust bean gum and xanthan gum as stabilizers to retard creaming. The stability of lutein in these emulsions was quite good, with 77 to 91 percent of lutein being left after storage in the dark at 20 to 22°C for 10 weeks whereas in spray dried emulsions the retention of lutein was 67 to 75 percent. The retention of lutein in oil was also good at 85 percent. Betanin was incorporated into the inner w1 water phase of a water1-in-oil-inwater2 (w1/o/w2) double emulsion with primary w1/o emulsion droplet size of 0.34 μm and secondary w1/o/w2 emulsion droplet size of 5.5 μm and encapsulation efficiency of betanin of 89 percent. In vitro intestinal lipid digestion was performed on the double emulsion, and during the first two hours, coalescence of the inner water phase droplets was observed, and the sizes of the double emulsion droplets increased quickly because of aggregation. This period also corresponded to gradual release of betanin, with a final release of 35 percent. The double emulsion structure was retained throughout the three-hour experiment. Betanin was also spray dried and incorporated into model juices with different pH and dry matter content. Model juices were stored in the dark at -20, 4, 20–24 or 60 °C (accelerated test) for several months. Betanin degraded quite rapidly in all of the samples and higher temperature and a lower pH accelerated degradation. Stability of betanin was much better in the spray dried powder, with practically no degradation during six months of storage in the dark at 20 to 24 °C and good stability also for six months in the dark at 60 °C with 60 percent retention. Consumer acceptance of model juices colored with spray dried betanin was compared with similar model juices colored with anthocyanins or beet extract. Consumers preferred beet extract and anthocyanin colored model juices over juices colored with spray dried betanin. However, spray dried betanin did not impart any off-odors or off-flavors into the model juices contrary to the beet extract. In conclusion, this thesis describes novel solvent-free extraction and encapsulation processes for lutein and betanin from plant sources. Lutein showed good stability in oil and in o/w emulsions, but slightly inferior in spray dried emulsions. In vitro intestinal lipid digestion showed a good stability of w1/o/w2 double emulsion and quite high retention of betanin during digestion. Consumer acceptance of model juices colored with spray dried betanin was not as good as model juices colored with anthocyanins, but addition of betanin to real berry juice could produce better results with mixture of added betanin and natural berry anthocyanins could produce a more acceptable color. Overall, further studies are needed to obtain natural colorants with good stability for the use in food products.
Resumo:
Almost every problem of design, planning and management in the technical and organizational systems has several conflicting goals or interests. Nowadays, multicriteria decision models represent a rapidly developing area of operation research. While solving practical optimization problems, it is necessary to take into account various kinds of uncertainty due to lack of data, inadequacy of mathematical models to real-time processes, calculation errors, etc. In practice, this uncertainty usually leads to undesirable outcomes where the solutions are very sensitive to any changes in the input parameters. An example is the investment managing. Stability analysis of multicriteria discrete optimization problems investigates how the found solutions behave in response to changes in the initial data (input parameters). This thesis is devoted to the stability analysis in the problem of selecting investment project portfolios, which are optimized by considering different types of risk and efficiency of the investment projects. The stability analysis is carried out in two approaches: qualitative and quantitative. The qualitative approach describes the behavior of solutions in conditions with small perturbations in the initial data. The stability of solutions is defined in terms of existence a neighborhood in the initial data space. Any perturbed problem from this neighborhood has stability with respect to the set of efficient solutions of the initial problem. The other approach in the stability analysis studies quantitative measures such as stability radius. This approach gives information about the limits of perturbations in the input parameters, which do not lead to changes in the set of efficient solutions. In present thesis several results were obtained including attainable bounds for the stability radii of Pareto optimal and lexicographically optimal portfolios of the investment problem with Savage's, Wald's criteria and criteria of extreme optimism. In addition, special classes of the problem when the stability radii are expressed by the formulae were indicated. Investigations were completed using different combinations of Chebyshev's, Manhattan and Hölder's metrics, which allowed monitoring input parameters perturbations differently.
Resumo:
A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.
Resumo:
Since cellulose is a linear macromolecule it can be used as a material for regenerated cellulose fiber products e.g. in textile fibers or film manufacturing. Cellulose is not thermoformable, thus the manufacturing of these regenerated fibers is mainly possible through dissolution processes preceding the regeneration process. However, the dissolution of cellulose in common solvents is hindered due to inter- and intra-molecular hydrogen bonds in the cellulose chains, and relatively high crystallinity. Interestingly at subzero temperatures relatively dilute sodium hydroxide solutions can be used to dissolve cellulose to a certain extent. The objective of this work was to investigate the possible factors that govern the solubility of cellulose in aqueous NaOH and the solution stability. Cellulose-NaOH solutions have the tendency to form a gel over time and at elevated temperature, which creates challenges for further processing. The main target of this work was to achieve high solubility of cellulose in aqueous NaOH without excessively compromising the solution stability. In the literature survey an overview of the cellulose dissolution is given and possible factors contributing to the solubility and solution properties of cellulose in aqueous NaOH are reviewed. Furthermore, the concept of solution rheology is discussed. In the experimental part the focus was on the characterization of the used materials and properties of the prepared solutions mainly concentrating on cellulose solubility and solution stability.
Resumo:
During cardiopulmonary exercise testing (CPET), stroke volume can be indirectly assessed by O2 pulse profile. However, for a valid interpretation, the stability of this variable over time should be known. The objective was to analyze the stability of the O2 pulse curve relative to body mass in elite athletes. VO2, heart rate (HR), and relative O2 pulse were compared at every 10% of the running time in two maximal CPETs, from 2005 to 2010, of 49 soccer players. Maximal values of VO2 (63.4 ± 0.9 vs 63.5 ± 0.9 mL O2•kg-1•min-1), HR (190 ± 1 vs188 ± 1 bpm) and relative O2 pulse (32.9 ± 0.6 vs 32.6 ± 0.6 mL O2•beat-1•kg-1) were similar for the two CPETs (P > 0.05), while the final treadmill velocity increased from 18.5 ± 0.9 to 18.9 ± 1.0 km/h (P < 0.01). Relative O2 pulse increased linearly and similarly in both evaluations (r² = 0.64 and 0.63) up to 90% of the running time. Between 90 and 100% of the running time, the values were less stable, with up to 50% of the players showing a tendency to a plateau in the relative O2 pulse. In young healthy men in good to excellent aerobic condition, the morphology of the relative O2 pulse curve is consistent up to close to the peak effort for a CPET repeated within a 1-year period. No increase in relative O2pulse at peak effort could represent a physiologic stroke volume limitation in these athletes.
Resumo:
DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting thatXIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance ofXIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.