899 resultados para Speed Variation within Lane
Resumo:
The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic “secular variation” in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.
Resumo:
The aims of this thesis were to investigate the neuropsychological, neurophysiological, and cognitive contributors to mobility changes with increasing age. In a series of studies with adults aged 45-88 years, unsafe pedestrian behaviour and falls were investigated in relation to i) cognitive functions (including response time variability, executive function, and visual attention tests), ii) mobility assessments (including gait and balance and using motion capture cameras), iii) motor initiation and pedestrian road crossing behavior (using a simulated pedestrian road scene), iv) neuronal and functional brain changes (using a computer based crossing task with magnetoencephalography), and v) quality of life questionnaires (including fear of falling and restricted range of travel). Older adults are more likely to be fatally injured at the far-side of the road compared to the near-side of the road, however, the underlying mobility and cognitive processes related to lane-specific (i.e. near-side or far-side) pedestrian crossing errors in older adults is currently unknown. The first study explored cognitive, motor initiation, and mobility predictors of unsafe pedestrian crossing behaviours. The purpose of the first study (Chapter 2) was to determine whether collisions at the near-side and far-side would be differentially predicted by mobility indices (such as walking speed and postural sway), motor initiation, and cognitive function (including spatial planning, visual attention, and within participant variability) with increasing age. The results suggest that near-side unsafe pedestrian crossing errors are related to processing speed, whereas far-side errors are related to spatial planning difficulties. Both near-side and far-side crossing errors were related to walking speed and motor initiation measures (specifically motor initiation variability). The salient mobility predictors of unsafe pedestrian crossings determined in the above study were examined in Chapter 3 in conjunction with the presence of a history of falls. The purpose of this study was to determine the extent to which walking speed (indicated as a salient predictor of unsafe crossings and start-up delay in Chapter 2), and previous falls can be predicted and explained by age-related changes in mobility and cognitive function changes (specifically within participant variability and spatial ability). 53.2% of walking speed variance was found to be predicted by self-rated mobility score, sit-to-stand time, motor initiation, and within participant variability. Although a significant model was not found to predict fall history variance, postural sway and attentional set shifting ability was found to be strongly related to the occurrence of falls within the last year. Next in Chapter 4, unsafe pedestrian crossing behaviour and pedestrian predictors (both mobility and cognitive measures) from Chapter 2 were explored in terms of increasing hemispheric laterality of attentional functions and inter-hemispheric oscillatory beta power changes associated with increasing age. Elevated beta (15-35 Hz) power in the motor cortex prior to movement, and reduced beta power post-movement has been linked to age-related changes in mobility. In addition, increasing recruitment of both hemispheres has been shown to occur and be beneficial to perform similarly to younger adults in cognitive tasks (Cabeza, Anderson, Locantore, & McIntosh, 2002). It has been hypothesised that changes in hemispheric neural beta power may explain the presence of more pedestrian errors at the farside of the road in older adults. The purpose of the study was to determine whether changes in age-related cortical oscillatory beta power and hemispheric laterality are linked to unsafe pedestrian behaviour in older adults. Results indicated that pedestrian errors at the near-side are linked to hemispheric bilateralisation, and neural overcompensation post-movement, 4 whereas far-side unsafe errors are linked to not employing neural compensation methods (hemispheric bilateralisation). Finally, in Chapter 5, fear of falling, life space mobility, and quality of life in old age were examined to determine their relationships with cognition, mobility (including fall history and pedestrian behaviour), and motor initiation. In addition to death and injury, mobility decline (such as pedestrian errors in Chapter 2, and falls in Chapter 3) and cognition can negatively affect quality of life and result in activity avoidance. Further, number of falls in Chapter 3 was not significantly linked to mobility and cognition alone, and may be further explained by a fear of falling. The objective of the above study (Study 2, Chapter 3) was to determine the role of mobility and cognition on fear of falling and life space mobility, and the impact on quality of life measures. Results indicated that missing safe pedestrian crossing gaps (potentially indicating crossing anxiety) and mobility decline were consistent predictors of fear of falling, reduced life space mobility, and quality of life variance. Social community (total number of close family and friends) was also linked to life space mobility and quality of life. Lower cognitive functions (particularly processing speed and reaction time) were found to predict variance in fear of falling and quality of life in old age. Overall, the findings indicated that mobility decline (particularly walking speed or walking difficulty), processing speed, and intra-individual variability in attention (including motor initiation variability) are salient predictors of participant safety (mainly pedestrian crossing errors) and wellbeing with increasing age. More research is required to produce a significant model to explain the number of falls.
Resumo:
In the first part of this study human immunodeficiency virus type 1 (HIV-1) proviral DNA sequences derived from 201 clones of the C2-V3 env region and the first exon of the tat gene were obtained from six MV-1 infected heterosexual couples. These molecular data were used to confirm the epidemiological relationships. The ability of the molecular data to draw such conclusions was also tested with multiple phylogenetic analyses. The tat region was much more useful in establishing epidemiological relationships than the commonly used C2-V3.^ Subsequently, using nucleotide sequences from the first exon of the Tat gene, we tested the hypothesis that a Florida dentist (a common source) infected five of his patients in the course of dental procedures, against the null hypothesis that the dentist and each individual of the dental group independently acquired the virus within the local community. Multiple phylogenetic analyses demonstrated that the sequences of the five patients were significantly more related to each other than to sequences of the controls. Our results using Tat sequences, combined with envelope sequence data, strongly support a common phylogenetic epidemiological relationship among these five patients.^ A third study is presented, which deals with the effects of genomic variations in drug resistance. HIV-1 reverse transcriptase (RT) mutations were detected in DNA from peripheral blood mononuclear cells from 11 of 12 HIV-infected children after 11-20 months of zidovudine monotherapy. The codon 41/215 mutant combination was associated with general decline in health status. Patients developing the codon 70 mutation tended to have a better health status. ^
Resumo:
Variation and uncertainty in estimated evaporation was determined over time and between two locations in Florida Bay, a subtropical estuary. Meteorological data were collected from September 2001 to August 2002 at Rabbit Key and Butternut Key within the Bay. Evaporation was estimated using both vapor flux and energy budget methods. The results were placed into a long-term context using 33 years of temperature and rainfall data collected in south Florida. Evaporation also was estimated from this long-term data using an empirical formula relating evaporation to clear sky solar radiation and air temperature. Evaporation estimates for the 12-mo period ranged from 144 to 175 cm yr21, depending on location and method, with an average of 163 cm yr21 (6 9%). Monthly values ranged from 9.2 to 18.5 cm, with the highest value observed in May, corresponding with the maximum in measured net radiation. Uncertainty estimates derived from measurement errors in the data were as much as 10%, and were large enough to obscure differences in evaporation between the two sites. Differences among all estimates for any month indicate the overall uncertainty in monthly evaporation, and ranged from 9% to 26%. Over a 33-yr period (1970–2002), estimated annual evaporation from Florida Bay ranged from 148 to 181 cm yr21, with an average of 166 cm yr21. Rainfall was consistently lower in Florida Bay than evaporation, with a long-term average of 106 cm yr21. Rainfall considered alone was uncorrelated with evaporation at both monthly and annual time scales; when the seasonal variation in clear sky radiation was also taken into account both net radiation and evaporation were significantly suppressed in months with high rainfall.
Resumo:
The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3–6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose.
Resumo:
Knowledge of movements and habitat use is necessary to assess a species’ ecological role and is especially important for mesopredators because they provide the link between upper and lower trophic levels. Using acoustic telemetry, we examined coarse-scale diel and seasonal movements of elasmobranch mesopredators on a shallow sandflat in Shark Bay, Western Australia. Giant shovelnose rays (Glaucostegus typus) and reticulate whiprays (Himantura uarnak) were most often detected in nearshore microhabitats and were regularly detected throughout the day and year, although reticulate whiprays tended to frequent the monitored array over longer periods. Pink whiprays (H. fai) and cowtail stingrays (Pastinachus atrus) were also detected throughout the day, but were far less frequently detected. Overall, there was no apparent spatial or temporal partitioning of the sandflats, but residency to the area varied between species. In addition, ray presence throughout the year suggests that previously observed differences in seasonal abundance are likely because of seasonal changes in habitat use rather than large-scale migrations. Continuous use of the sandflats and limited movements within this ray community suggests that rays have the potential to be a structuring force on this system and that focusing on nearshore habitats is important for managing subtropical ray populations.
Resumo:
Background: Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. Results: We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers. Conclusion: Our results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.
Resumo:
Stable isotopes are important tools for understanding the trophic roles of elasmobranchs. However, whether different tissues provide consistent stable isotope values within an individual are largely unknown. To address this, the relationships among carbon and nitrogen isotope values were quantified for blood, muscle, and fin from juvenile bull sharks (Carcharhinus leucas) and blood and fin from large tiger sharks (Galeocerdo cuvier) collected in two different ecosystems. We also investigated the relationship between shark size and the magnitude of differences in isotopic values between tissues. Isotope values were significantly positively correlated for all paired tissue comparisons, but R2 values were much higher for δ13C than for δ15N. Paired differences between isotopic values of tissues were relatively small but varied significantly with shark total length, suggesting that shark size can be an important factor influencing the magnitude of differences in isotope values of different tissues. For studies of juvenile sharks, care should be taken in using slow turnover tissues like muscle and fin, because they may retain a maternal signature for an extended time. Although correlations were relatively strong, results suggest that correction factors should be generated for the desired study species and may only allow coarse-scale comparisons between studies using different tissue types.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Improvements in genomic technology, both in the increased speed and reduced cost of sequencing, have expanded the appreciation of the abundance of human genetic variation. However the sheer amount of variation, as well as the varying type and genomic content of variation, poses a challenge in understanding the clinical consequence of a single mutation. This work uses several methodologies to interpret the observed variation in the human genome, and presents novel strategies for the prediction of allele pathogenicity.
Using the zebrafish model system as an in vivo assay of allele function, we identified a novel driver of Bardet-Biedl Syndrome (BBS) in CEP76. A combination of targeted sequencing of 785 cilia-associated genes in a cohort of BBS patients and subsequent in vivo functional assays recapitulating the human phenotype gave strong evidence for the role of CEP76 mutations in the pathology of an affected family. This portion of the work demonstrated the necessity of functional testing in validating disease-associated mutations, and added to the catalogue of known BBS disease genes.
Further study into the role of copy-number variations (CNVs) in a cohort of BBS patients showed the significant contribution of CNVs to disease pathology. Using high-density array comparative genomic hybridization (aCGH) we were able to identify pathogenic CNVs as small as several hundred bp. Dissection of constituent gene and in vivo experiments investigating epistatic interactions between affected genes allowed for an appreciation of several paradigms by which CNVs can contribute to disease. This study revealed that the contribution of CNVs to disease in BBS patients is much higher than previously expected, and demonstrated the necessity of consideration of CNV contribution in future (and retrospective) investigations of human genetic disease.
Finally, we used a combination of comparative genomics and in vivo complementation assays to identify second-site compensatory modification of pathogenic alleles. These pathogenic alleles, which are found compensated in other species (termed compensated pathogenic deviations [CPDs]), represent a significant fraction (from 3 – 10%) of human disease-associated alleles. In silico pathogenicity prediction algorithms, a valuable method of allele prioritization, often misrepresent these alleles as benign, leading to omission of possibly informative variants in studies of human genetic disease. We created a mathematical model that was able to predict CPDs and putative compensatory sites, and functionally showed in vivo that second-site mutation can mitigate the pathogenicity of disease alleles. Additionally, we made publically available an in silico module for the prediction of CPDs and modifier sites.
These studies have advanced the ability to interpret the pathogenicity of multiple types of human variation, as well as made available tools for others to do so as well.
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.
Resumo:
Abstract
The goal of modern radiotherapy is to precisely deliver a prescribed radiation dose to delineated target volumes that contain a significant amount of tumor cells while sparing the surrounding healthy tissues/organs. Precise delineation of treatment and avoidance volumes is the key for the precision radiation therapy. In recent years, considerable clinical and research efforts have been devoted to integrate MRI into radiotherapy workflow motivated by the superior soft tissue contrast and functional imaging possibility. Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive technique that measures properties of tissue microvasculature. Its sensitivity to radiation-induced vascular pharmacokinetic (PK) changes has been preliminary demonstrated. In spite of its great potential, two major challenges have limited DCE-MRI’s clinical application in radiotherapy assessment: the technical limitations of accurate DCE-MRI imaging implementation and the need of novel DCE-MRI data analysis methods for richer functional heterogeneity information.
This study aims at improving current DCE-MRI techniques and developing new DCE-MRI analysis methods for particular radiotherapy assessment. Thus, the study is naturally divided into two parts. The first part focuses on DCE-MRI temporal resolution as one of the key DCE-MRI technical factors, and some improvements regarding DCE-MRI temporal resolution are proposed; the second part explores the potential value of image heterogeneity analysis and multiple PK model combination for therapeutic response assessment, and several novel DCE-MRI data analysis methods are developed.
I. Improvement of DCE-MRI temporal resolution. First, the feasibility of improving DCE-MRI temporal resolution via image undersampling was studied. Specifically, a novel MR image iterative reconstruction algorithm was studied for DCE-MRI reconstruction. This algorithm was built on the recently developed compress sensing (CS) theory. By utilizing a limited k-space acquisition with shorter imaging time, images can be reconstructed in an iterative fashion under the regularization of a newly proposed total generalized variation (TGV) penalty term. In the retrospective study of brain radiosurgery patient DCE-MRI scans under IRB-approval, the clinically obtained image data was selected as reference data, and the simulated accelerated k-space acquisition was generated via undersampling the reference image full k-space with designed sampling grids. Two undersampling strategies were proposed: 1) a radial multi-ray grid with a special angular distribution was adopted to sample each slice of the full k-space; 2) a Cartesian random sampling grid series with spatiotemporal constraints from adjacent frames was adopted to sample the dynamic k-space series at a slice location. Two sets of PK parameters’ maps were generated from the undersampled data and from the fully-sampled data, respectively. Multiple quantitative measurements and statistical studies were performed to evaluate the accuracy of PK maps generated from the undersampled data in reference to the PK maps generated from the fully-sampled data. Results showed that at a simulated acceleration factor of four, PK maps could be faithfully calculated from the DCE images that were reconstructed using undersampled data, and no statistically significant differences were found between the regional PK mean values from undersampled and fully-sampled data sets. DCE-MRI acceleration using the investigated image reconstruction method has been suggested as feasible and promising.
Second, for high temporal resolution DCE-MRI, a new PK model fitting method was developed to solve PK parameters for better calculation accuracy and efficiency. This method is based on a derivative-based deformation of the commonly used Tofts PK model, which is presented as an integrative expression. This method also includes an advanced Kolmogorov-Zurbenko (KZ) filter to remove the potential noise effect in data and solve the PK parameter as a linear problem in matrix format. In the computer simulation study, PK parameters representing typical intracranial values were selected as references to simulated DCE-MRI data for different temporal resolution and different data noise level. Results showed that at both high temporal resolutions (<1s) and clinically feasible temporal resolution (~5s), this new method was able to calculate PK parameters more accurate than the current calculation methods at clinically relevant noise levels; at high temporal resolutions, the calculation efficiency of this new method was superior to current methods in an order of 102. In a retrospective of clinical brain DCE-MRI scans, the PK maps derived from the proposed method were comparable with the results from current methods. Based on these results, it can be concluded that this new method can be used for accurate and efficient PK model fitting for high temporal resolution DCE-MRI.
II. Development of DCE-MRI analysis methods for therapeutic response assessment. This part aims at methodology developments in two approaches. The first one is to develop model-free analysis method for DCE-MRI functional heterogeneity evaluation. This approach is inspired by the rationale that radiotherapy-induced functional change could be heterogeneous across the treatment area. The first effort was spent on a translational investigation of classic fractal dimension theory for DCE-MRI therapeutic response assessment. In a small-animal anti-angiogenesis drug therapy experiment, the randomly assigned treatment/control groups received multiple fraction treatments with one pre-treatment and multiple post-treatment high spatiotemporal DCE-MRI scans. In the post-treatment scan two weeks after the start, the investigated Rényi dimensions of the classic PK rate constant map demonstrated significant differences between the treatment and the control groups; when Rényi dimensions were adopted for treatment/control group classification, the achieved accuracy was higher than the accuracy from using conventional PK parameter statistics. Following this pilot work, two novel texture analysis methods were proposed. First, a new technique called Gray Level Local Power Matrix (GLLPM) was developed. It intends to solve the lack of temporal information and poor calculation efficiency of the commonly used Gray Level Co-Occurrence Matrix (GLCOM) techniques. In the same small animal experiment, the dynamic curves of Haralick texture features derived from the GLLPM had an overall better performance than the corresponding curves derived from current GLCOM techniques in treatment/control separation and classification. The second developed method is dynamic Fractal Signature Dissimilarity (FSD) analysis. Inspired by the classic fractal dimension theory, this method measures the dynamics of tumor heterogeneity during the contrast agent uptake in a quantitative fashion on DCE images. In the small animal experiment mentioned before, the selected parameters from dynamic FSD analysis showed significant differences between treatment/control groups as early as after 1 treatment fraction; in contrast, metrics from conventional PK analysis showed significant differences only after 3 treatment fractions. When using dynamic FSD parameters, the treatment/control group classification after 1st treatment fraction was improved than using conventional PK statistics. These results suggest the promising application of this novel method for capturing early therapeutic response.
The second approach of developing novel DCE-MRI methods is to combine PK information from multiple PK models. Currently, the classic Tofts model or its alternative version has been widely adopted for DCE-MRI analysis as a gold-standard approach for therapeutic response assessment. Previously, a shutter-speed (SS) model was proposed to incorporate transcytolemmal water exchange effect into contrast agent concentration quantification. In spite of richer biological assumption, its application in therapeutic response assessment is limited. It might be intriguing to combine the information from the SS model and from the classic Tofts model to explore potential new biological information for treatment assessment. The feasibility of this idea was investigated in the same small animal experiment. The SS model was compared against the Tofts model for therapeutic response assessment using PK parameter regional mean value comparison. Based on the modeled transcytolemmal water exchange rate, a biological subvolume was proposed and was automatically identified using histogram analysis. Within the biological subvolume, the PK rate constant derived from the SS model were proved to be superior to the one from Tofts model in treatment/control separation and classification. Furthermore, novel biomarkers were designed to integrate PK rate constants from these two models. When being evaluated in the biological subvolume, this biomarker was able to reflect significant treatment/control difference in both post-treatment evaluation. These results confirm the potential value of SS model as well as its combination with Tofts model for therapeutic response assessment.
In summary, this study addressed two problems of DCE-MRI application in radiotherapy assessment. In the first part, a method of accelerating DCE-MRI acquisition for better temporal resolution was investigated, and a novel PK model fitting algorithm was proposed for high temporal resolution DCE-MRI. In the second part, two model-free texture analysis methods and a multiple-model analysis method were developed for DCE-MRI therapeutic response assessment. The presented works could benefit the future DCE-MRI routine clinical application in radiotherapy assessment.
Resumo:
Dengue is an important vector-borne virus that infects on the order of 400 million individuals per year. Infection with one of the virus's four serotypes (denoted DENV-1 to 4) may be silent, result in symptomatic dengue 'breakbone' fever, or develop into the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Extensive research has therefore focused on identifying factors that influence dengue infection outcomes. It has been well-documented through epidemiological studies that DHF is most likely to result from a secondary heterologous infection, and that individuals experiencing a DENV-2 or DENV-3 infection typically are more likely to present with more severe dengue disease than those individuals experiencing a DENV-1 or DENV-4 infection. However, a mechanistic understanding of how these risk factors affect disease outcomes, and further, how the virus's ability to evolve these mechanisms will affect disease severity patterns over time, is lacking. In the second chapter of my dissertation, I formulate mechanistic mathematical models of primary and secondary dengue infections that describe how the dengue virus interacts with the immune response and the results of this interaction on the risk of developing severe dengue disease. I show that only the innate immune response is needed to reproduce characteristic features of a primary infection whereas the adaptive immune response is needed to reproduce characteristic features of a secondary dengue infection. I then add to these models a quantitative measure of disease severity that assumes immunopathology, and analyze the effectiveness of virological indicators of disease severity. In the third chapter of my dissertation, I then statistically fit these mathematical models to viral load data of dengue patients to understand the mechanisms that drive variation in viral load. I specifically consider the roles that immune status, clinical disease manifestation, and serotype may play in explaining viral load variation observed across the patients. With this analysis, I show that there is statistical support for the theory of antibody dependent enhancement in the development of severe disease in secondary dengue infections and that there is statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of DENV-2 and DENV-3 exceeding those of DENV-1. In the fourth chapter of my dissertation, I integrate these within-host models with a vector-borne epidemiological model to understand the potential for virulence evolution in dengue. Critically, I show that dengue is expected to evolve towards intermediate virulence, and that the optimal virulence of the virus depends strongly on the number of serotypes that co-circulate. Together, these dissertation chapters show that dengue viral load dynamics provide insight into the within-host mechanisms driving differences in dengue disease patterns and that these mechanisms have important implications for dengue virulence evolution.
Resumo:
Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as
`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol
particles and greenhouse gases (GHGs) as responses to their surrounding environments.
While the signicance of quantifying the exchange rates of GHGs and atmospheric
aerosol particles between the terrestrial biosphere and the atmosphere is
hardly questioned in many scientic elds, the progress in improving model predictability,
data interpretation or the combination of the two remains impeded by
the lack of precise framework elucidating their dynamic transport processes over a
wide range of spatiotemporal scales. The diculty in developing prognostic modeling
tools to quantify the source or sink strength of these atmospheric substances
can be further magnied by the fact that the climate system is also sensitive to the
feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,
the emergent need is to reduce uncertainties when assessing this complex and dynamic
feedback cycle that is necessary to support the decisions of mitigation and
adaptation policies associated with human activities (e.g., anthropogenic emission
controls and land use managements) under current and future climate regimes.
With the goal to improve the predictions for the biosphere-atmosphere exchange
of biologically active gases and atmospheric aerosol particles, the main focus of this
dissertation is on revising and up-scaling the biotic and abiotic transport processes
from leaf to canopy scales. The validity of previous modeling studies in determining
iv
the exchange rate of gases and particles is evaluated with detailed descriptions of their
limitations. Mechanistic-based modeling approaches along with empirical studies
across dierent scales are employed to rene the mathematical descriptions of surface
conductance responsible for gas and particle exchanges as commonly adopted by all
operational models. Specically, how variation in horizontal leaf area density within
the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes
and thereby the ultrane particle collection eciency at the leaf/branch scale
is explored using wind tunnel experiments with interpretations by a porous media
model and a scaling analysis. A multi-layered and size-resolved second-order closure
model combined with particle
uxes and concentration measurements within and
above a forest is used to explore the particle transport processes within the canopy
sub-layer and the partitioning of particle deposition onto canopy medium and forest
oor. For gases, a modeling framework accounting for the leaf-level boundary layer
eects on the stomatal pathway for gas exchange is proposed and combined with sap
ux measurements in a wind tunnel to assess how leaf-level transpiration varies with
increasing wind speed. How exogenous environmental conditions and endogenous
soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and
below-ground water dynamics in the soil-plant system and shape plant responses
to droughts is assessed by a porous media model that accommodates the transient
water
ow within the plant vascular system and is coupled with the aforementioned
leaf-level gas exchange model and soil-root interaction model. It should be noted
that tackling all aspects of potential issues causing uncertainties in forecasting the
feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single
dissertation but further research questions and opportunities based on the foundation
derived from this dissertation are also brie
y discussed.
Resumo:
Background: Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios. Methodology/Principal Findings: We examined the effect of CO2-induced pH changes ("ocean acidification") in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at delta pH = 0.3, but not at delta pH = 0.5. Conclusions and Significance: The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of 'winners' and 'losers' of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.