931 resultados para Specific protein(s)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclic GMP-dependent protein kinase (PKG) is a key transducer in the NO-cGMP signaling pathway. In this line, PKG has been considered an important drug target for treating hypertensive cardiovascular and pulmonary diseases. However, the investigation of PKG’s allosteric activation mechanism has been hampered by a lack of structural information. One of the fundamental questions on the cGMP-dependent activation of PKG is how the enzyme can distinguish cGMP over cAMP and selectively respond to cGMP. To ensure proper signaling, PKG must have developed unique features to ensure its activation upon the right activation signal. In this thesis, the cGMP-selective activation mechanism of PKG was studied through determining crystal structures of three truncated constructs of the regulatory domain [CNB-A (92-227), CNB-B (271-369), and CNB-A/B (92-351)] of PKG Iβ in the absence or presence of cyclic nucleotides. Herein, two individual CNB domain structures with biochemical data revealed that the C-terminal CNB domain (CNB-B) is responsible for cGMP selectivity, while the N-terminal CNB-domain (CNB-A) has a higher binding affinity for both cGMP and cAMP without showing any selectivity. Based on these crystal structures, mutagenesis studies were performed in which the critical residues for cyclic nucleotide selectivity and activation were identified. Furthermore, we discovered that the conformational changes of the C-terminal helix of the CNB-B that bridges between the regulatory and catalytic domains including the hydrophobic capping interaction are crucial for PKG activation. In addition, to observe the global conformation of the activated R-domain, I solved a co-crystal structure of the CNB-A/B with cGMP. Although a monomeric construct was crystallized, the structure displays a dimer. Strikingly, the CNB-A domain and its bound cGMP provide a key interface for this dimeric interaction. Using small angle X-ray scattering (SAXS), the existence of the cGMP-mediated dimeric interface within the CNB domains was confirmed. Furthermore, measuring cGMP-binding affinities (EC50) of the dimeric interface mutants as well as determining activation constants (Ka) revealed that the interface formation is important for PKG activation. To conclude, this thesis study provides a new mechanistic insight in PKG activation along with a newly found interface that can be targeted for designing PKG-specific activity modulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the prion protein (PrP) is expressed on the surface of bone marrow cell populations enriched in long-term repopulating hematopoietic stem cells. Affinity purification of the PrP-positive and PrP-negative fractions from these populations, followed by competitive reconstitution assays, show that all long-term repopulating hematopoietic stem cells express PrP. Hematopoietic stem cells from PrP null bone marrow exhibit impaired self-renewal in serial competitive transplantation experiments, and premature exhaustion when exposed to cell cycle-specific myelotoxic injury. Therefore, PrP is a novel marker for hematopoietic stem cells and regulates their self-renewal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While protein microarray technology has been successful in demonstrating its usefulness for large scale high-throughput proteome profiling, performance of antibody/antigen microarrays has been only moderately productive. Immobilization of either the capture antibodies or the protein samples on solid supports has severe drawbacks. Denaturation of the immobilized proteins as well as inconsistent orientation of antibodies/ligands on the arrays can lead to erroneous results. This has prompted a number of studies to address these challenges by immobilizing proteins on biocompatible surfaces, which has met with limited success. Our strategy relates to a multiplexed, sensitive and high-throughput method for the screening quantification of intracellular signalling proteins from a complex mixture of proteins. Each signalling protein to be monitored has its capture moiety linked to a specific oligo ‘tag’. The array involves the oligonucleotide hybridization-directed localization and identification of different signalling proteins simultaneously, in a rapid and easy manner. Antibodies have been used as the capture moieties for specific identification of each signaling protein. The method involves covalently partnering each antibody/protein molecule with a unique DNA or DNA derivatives oligonucleotide tag that directs the antibody to a unique site on the microarray due to specific hybridization with a complementary tag-probe on the array. Particular surface modifications and optimal conditions allowed high signal to noise ratio which is essential to the success of this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double-stranded DNA-binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N-terminus, a central H1/H5-like domain and a C-terminally located coiled-coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double-stranded DNA in vitro, while the central H1/H5-like domain interacts non-specifically with DNA sequences and mediates protein–protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5-like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle-regulated, as the level of nuclear-associated GFP diminishes during mitotic entry and GFP progressively re-associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell-cycle progression, with the other involving rapid exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dataset of 1,846,990 completed lactation record,; was created Using milk recording data from 8,967 commercial dairy farms in the United Kingdom over a five year period. Herd-specific lactation curves describing levels of milk, Cat and protein by lactation number and month of calving were generated for each farm. The actual yield of milk and protein proportion at the first milk recording of individual cow lactations were compared with the levels taken from the lactation curves. Logistic regression analysis showed that cows production milk with a lower percentage of protein than average had a significantly lower probability of being in-calf at 100 days post calving and it significantly higher probability of being culled at the end of lactation. The culling rates derived from the studied database demonstrate the current high wastage rate of commercial dairy cows. Well of this wastage is due to involuntary culling as a result of reproductive failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is just over 30 years since the definitive identification of the adrenocorticotrophin (ACTH) precursor, pro-opiomelanocotin (POMC). Although first characterised in the anterior and intermediate lobes of the pituitary, POMC is also expressed in a number of both central and peripheral tissues including the skin, central nervous tissue and placenta. Following synthesis, POMC undergoes extensive post-translational processing producing not only ACTH, but also a number of other biologically active peptides. The extent and pattern of this processing is tissue-specific, the end result being the tissue dependent production of different combinations of peptides from the same precursor. These peptides have a diverse range of biological roles ranging from pigmentation to adrenal function to the regulation of feeding. This level of complexity has resulted in POMC becoming the archetypal model for prohormone processing, illustrating how a single protein combined with post-translational modification can have a diverse number of roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of solute-binding protein-dependent transporters in rhizobia is dramatically increased compared with the majority of other bacteria so far sequenced. This increase may be due to the high affinity of solute-binding proteins for solutes, permitting the acquisition of a broad range of growth-limiting nutrients from soil and the rhizosphere. The transcriptional induction of these transporters was studied by creating a suite of plasmid and integrated fusions to nearly all ATP-binding cassette (ABC) and tripartite ATP-independent periplasmic (TRAP) transporters of Sinorhizobium meliloti. In total, specific inducers were identified for 76 transport systems, amounting to approximate to 47% of the ABC uptake systems and 53% of the TRAP transporters in S. meliloti. Of these transport systems, 64 are previously uncharacterized in Rhizobia and 24 were induced by solutes not known to be transported by ABC- or TRAP-uptake systems in any organism. This study provides a global expression map of one of the largest transporter families (transportome) and an invaluable tool to both understand their solute specificity and the relationships between members of large paralogous families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INFalpha and INFgamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differences in the expression of cell surface proteins between a normal prostate epithelial (1542-NP2TX) and a prostate cancer cell line (1542-CP3TX) derived from the same patient were investigated. A combination of affinity chromatographic purification of biotin-tagged surface proteins with mass spectrometry analysis identified 26 integral membrane proteins and 14 peripheral surface proteins. The findings confirm earlier reports of altered expression in prostate cancer for several cell surface proteins, including ALCAM/CD166, the Ephrin type A receptor, EGFR and the prostaglandin F2 receptor regulatory protein. In addition, several novel findings of differential expression were made, including the voltage-dependent anion selective channel proteins Porin 1 and 2, ecto-5'-nucleotidase (CD73) and Scavenger receptor B1. Cell surface protein expression changed both qualitatively and quantitatively when the cells were grown in the presence of either or both interferon INF alpha and INF gamma. Costimulation with type I and II interferons had additive or synergistic effects on the membrane density of several, mainly peripherally attached surface proteins. Concerted upregulation of surface exposed antigens may be of benefit in immuno-adjuvant-based treatment of interferon-responsive prostate cancer. In conclusion, this study demonstrates that differences in the expression of membrane proteins between normal and prostate cancer cells are reproducibly detectable following vectorial labelling with biotin, and that detailed analysis of extracellular-induced surface changes can be achieved by combining surface-specific labelling with high-resolution two-dimensional gel electrophoresis and mass spectrometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis ( 2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a > 1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel alpha 2 delta-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S(35)methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of change of the rheological properties of gluten with the addition of fractions with specific molecular weight was investigated. Fractions extracted from Hereward, Riband and Soissons flours were added to the dough prior to gluten extraction. Once extracted, the glutens were subjected to temperature sweeps and creep recovery rheological tests. In the temperature sweeps, Hereward fractions containing the larger polypeptides had a strengthening effect on the gluten, indicated by a decrease in tan delta and an increase in elastic creep recovery, while those fractions that comprised monomeric gliadins had a weakening effect. Adding total gluten also had a strengthening effect. For the biscuit-making flour Riband, the results were quite the reverse: all fractions appeared to strengthen the gluten network, while the addition of total gluten did not have a strengthening effect. For Soissons gluten, the addition of total gluten had a strengthening effect while adding any individual fraction weakened the gluten. The results were confirmed with creep-recovery tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptor kinases (GRKs) are regulatory enzymes involved in the modulation of seven-transmembrane-helix receptors. In order to develop specific inhibitors for these kinases, we synthesized and investigated peptide inhibitors derived from the sequence of the first intracellular loop of the beta(2)-adrenergic receptor. Introduction of changes in the sequence and truncation of N- and C-terminal amino acids increased the inhibitory potency by a factor of 40. These inhibitors not only inhibited the prototypical GRK2 but also GRK3 and GRK5. In contrast there was no inhibition of protein kinase C and protein kinase A even at the highest concentration tested. The peptide with the sequence AKFERLQTVTNYFITSE inhibited GRK2 with an IC50 of 0.6 mu M, GRK3 with 2.6 mu M and GRK5 with 1.6 mu M. The peptide inhibitors were non-competitive for receptor and ATP. These findings demonstrate that specific peptides can inhibit GRKs in the submicromolar range and suggest that a further decrease in size is possible without losing the inhibitory potency. (c) 2005 Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complement-mediated inflammation exacerbates the tissue injury of ischaemic necrosis in heart attacks and strokes, the most common causes of death in developed countries. Large infarct size increases immediate morbidity and mortality and, in survivors of the acute event, larger non-functional scars adversely affect long-term prognosis. There is thus an important unmet medical need for new cardioprotective and neuroprotective treatments. We have previously shown that human C-reactive protein (CRP), the classical acute-phase protein that binds to ligands exposed in damaged tissue and then activates complement(1), increases myocardial and cerebral infarct size in rats subjected to coronary or cerebral artery ligation, respectively(2,3). Rat CRP does not activate rat complement, whereas human CRP activates both rat and human complement(4). Administration of human CRP to rats is thus an excellent model for the actions of endogenous human CRP2,3. Here we report the design, synthesis and efficacy of 1,6-bis(phosphocholine)-hexane as a specific small-molecule inhibitor of CRP. Five molecules of this palindromic compound are bound by two pentameric CRP molecules, crosslinking and occluding the ligand-binding B-face of CRP and blocking its functions. Administration of 1,6-bis(phosphocholine)-hexane to rats undergoing acute myocardial infarction abrogated the increase in infarct size and cardiac dysfunction produced by injection of human CRP. Therapeutic inhibition of CRP is thus a promising new approach to cardioprotection in acute myocardial infarction, and may also provide neuroprotection in stroke. Potential wider applications include other inflammatory, infective and tissue-damaging conditions characterized by increased CRP production, in which binding of CRP to exposed ligands in damaged cells may lead to complement-mediated exacerbation of tissue injury.