987 resultados para Solar magnetic fields
Resumo:
Recent studies have demonstrated that sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field, especially in the case when the magnetic field is parallel to the workpiece surface or intersects it at small angles. In this work we report the results from two-dimensional, particle-in-cell (PIC) computer simulations of magnetic field enhanced plasma immersion implantation system at different bias voltages. The simulations begin with initial low-density nitrogen plasma, which extends with uniform density through a grounded cylindrical chamber. Negative bias voltage is applied to a cylindrical target located on the axis of the vacuum chamber. An axial magnetic field is created by a solenoid installed inside the target holder. A set of simulations at a fixed magnetic field of 0.0025 T at the target surface is performed. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that the plasma density around the cylindrical target increases because of intense background gas ionization by the electrons drifting in the crossed E x B fields. Suppression of the sheath expansion and increase of the implantation current density in front of the high-density plasma region are observed. The effect of target bias on the sheath dynamics and implantation current of the magnetic field enhanced PIII is discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Plasma immersion ion implantation (PIII) with low external magnetic field has been investigated both numerically and experimentally. The static magnetic field considered is essentially nonuniform and is generated by two magnetic coils installed outside the vacuum chamber. Experiments have been conducted to investigate the effect of two of the most important PIII parameters: target voltage and gas pressure. In that context, it was found that the current density increased when the external parameters were varied. Later, the PIII process was analyzed numerically using the 2.5-D computer code KARAT. The numerical results show that the system of crossed E x B fields enhances the PIII process. The simulation showed an increase of the plasma density around the target under the operating and design conditions considered. Consequently, an increase of the ion current density on the target was observed. All these results are explained through the mechanism of gas ionization by collisions with electrons drifting in crossed E x B fields.
Resumo:
What can we learn from solar neutrino observations? Is there any solution to the solar neutrino anomaly which is favored by the present experimental panorama? After SNO results, is it possible to affirm that neutrinos have mass? In order to answer such questions we analyze the current available data from the solar neutrino experiments, including the recent SNO result, in view of many acceptable solutions to the solar neutrino problem based on different conversion mechanisms, for the first time using the same statistical procedure. This allows us to do a direct comparison of the goodness of the fit among different solutions, from which we can discuss and conclude on the current status of each proposed dynamical mechanism. These solutions are based on different assumptions: (a) neutrino mass and mixing, (b) a nonvanishing neutrino magnetic moment, (c) the existence of nonstandard flavor-changing and nonuniversal neutrino interactions, and (d) a tiny violation of the equivalence principle. We investigate the quality of the fit provided by each one of these solutions not only to the total rate measured by all the solar neutrino experiments but also to the recoil electron energy spectrum measured at different zenith angles by the Super-Kamiokande Collaboration. We conclude that several nonstandard neutrino flavor conversion mechanisms provide a very good fit to the experimental data which is comparable with (or even slightly better than) the most famous solution to the solar neutrino anomaly based on the neutrino oscillation induced by mass.
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Magnetic properties of two spinel oxides solid solutions, Cul+xMn2-xO4 and Ni1+xMn2-xO4 are reported. These series are characterized by two magnetic transitions: the upper one, of ferrimagnetic type, occurs at about 85 K (for copper-based) and at 105-110 K (for nickel-based spinels), independently of the x-content: the lower transition may be related to a Neel-type collinear ordering and takes place at 30 and 45 K, respectively. Application of moderate fields (H > 250 Oe) make both transitions to merge into one broad maximum in the magnetization, which takes place at lower temperature when applying larger fields. Magnetization cycles with temperature (ZFC/FC) or field (loops) allowed us to well characterize the ordered state. The effective moment follows the expected behavior when manganese ions are being substituted by ions of lower magnetic moment (Ni(2+)andCU(2+)). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.
Resumo:
The evolution of the energy states of the phosphorous donor in silicon with magnetic field has been the subject of previous experimental and theoretical studies to fields of 10 T. We now present experimental optical absorption data to 18 T in combination with theoretical data to the same field. We observe features that are not revealed in the earlier work, including additional interactions and anti-crossings between the different final states. For example, according to the theory, for the "1s -> 2p (+)" transition, there are anti-crossings at about 5, 10, 14, 16, and 18 T. In the experiments, we resolve at least the 5, 10, and 14 T anti-crossings, and our data at 16 and 18 T are consistent with the calculations.
Resumo:
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E x B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E x B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
We show that the formation of condensates in the presence of a constant magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without a chemical potential. The value of the condensate as well as other observables are shown to become nonanalytic at finite temperature.
Resumo:
An alternative formulation for guided electromagnetic fields in grounded chiral slabs is presented. This formulation is formally equivalent to the double Fourier transform method used by the authors to calculate the spectral fields in open chirostrip structures. In this paper, we have addressed the behavior of the electromagnetic fields in the vicinity of the ground plane and at the interface between the chiral substrate and the free space region. It was found that the boundary conditions for the magnetic field, valid for achiral media, are not completely satisfied when we deal with chiral material. Effects of chirality on electromagnetic field distributions and on surface wave dispersion curves were also analyzed.
Resumo:
We investigate the flux penetration patterns and matching fields of a long cylindrical wire of circular cross section in the presence of an external magnetic field. For this study we write the London theory for a long cylinder both for the mixed and Meissner states, with boundary conditions appropriate for this geometry. Using the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to the vortex position and we obtain the ground state of the vortex lattice for N=3 up to 18 vortices. The free energy of the Meissner and mixed states provides expressions for the matching fields. We find that, as in the case of samples of different geometry, the finite-size effect provokes a delay on the vortex penetration and a vortex accumulation in the center of the sample. The vortex patterns obtained are in good agreement with experimental results.
Resumo:
An inverse problem concerning the industrial process of steel bars hardening and tempering is considered. The associated optimization problem is formulated in terms of membership functions and, for the sake of comparison, also in terms of quadratic residuals; both geometric and electromagnetic design variables have been considered. The numerical solution is achieved by coupling a finite difference procedure for the calculation of the electromagnetic and thermal fields to a deterministic strategy of minimization based on modified Flctcher and Reeves method. © 1998 IEEE.
Resumo:
We obtain the vortex configurations, the matching fields, and the magnetization of a superconducting film with a finite cross section. The applied magnetic field is normal to this cross section, and we use the London theory to calculate many of its properties, such as the local magnetic field, the free energy, and the induction for the mixed state. Thus previous similar theoretical works, done for an infinitely long superconducting film, are recovered here, in the special limit of a very long cross section. ©1999 The American Physical Society.
Resumo:
The upcoming solar maximum, which is expected to reach its peak around May 2013, occurs at a time when our reliance on high-precision GNSS has reached unprecedented proportions. The perturbations of the ionosphere caused by increased solar activity pose a major threat to these applications. This is particularly true in equatorial regions where high exposure to solar-induced disturbances is coupled with explosive growth of precise GNSS applications. Along with the various types of solar-induced ionospheric disturbances, strong scintillations are amongst the most challenging, causing phase measurement errors up to full losses of lock for several satellites. Brazil, which heavily relies on high-precision GNSS, is one of the most affected regions due notably to the proximity to the southern crest of the ionospheric equatorial anomaly and to the South Atlantic Magnetic Anomaly. In the framework of the CIGALA project, we developed the PolaRxS™, a GNSS receiver dedicated to the monitoring of ionospheric scintillation indices not only in the GPS L1 band but for all operational and upcoming constellations and frequency bands. A network of these receivers was deployed across the whole Brazilian territory in order to first investigate and secondly to mitigate the impact of scintillation on the different signals, ensuring high precision GNSS availability and integrity in the area. This paper reports on the validation of the PolaRxS™ receiver as an ionospheric scintillation monitor and the first results of the analysis of the data collected with the CIGALA network.