727 resultados para Soft Contact-lenses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1-30 mu m in diameter) have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m) with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR) and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, Chen and Gao [Chen, S., Gao, H., 2007. Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. solids 55, 1001-1015] studied the problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic solid subjected to an inclined pulling force. An implicit assumption made in their study was that the contact region remains symmetric with respect to the center of the cylinder. This assumption is, however, not self-consistent because the resulting energy release rates at two contact edges, which are supposed to be identical, actually differ from each other. Here we revisit the original problem of Chen and Gao and derive the correct solution by removing this problematic assumption. The corrected solution provides a proper insight into the concept of orientation-dependent adhesion strength in anisotropic elastic solids. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the role of vertical component of Surface tension of a droplet on the elastic deformation of a finite-thickness flexible membrane was theoretically analyzed using Hankel transformation. The vertical displacement at the Surface was derived and can be reduced to Lester's or Rusanov's solutions when the thickness is infinite. Moreover, some Simulations of the effect of a liquid droplet on a membrane with a finite thickness were made. The numerical results showed that there exists a saturated membrane thickness of the order of millimeter, when the thickness of a membrane is larger than such a value, the membrane can be regarded as a half-infinite body. Further numerical calculations for soft membrane whose thickness is far below the saturated thickness were made. By comparison between the maximum vertical displacement of an ultrathin soft membrane and a half-infinite body, we found that Lester's or Rusanov's solutions for a half-infinite body cannot correctly describe Such cases. In other words, the thickness of a soft membrane has great effect on the surface deformation of the ultrathin membrane induced by a liquid droplet. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Hertz and JKR theories, parabolic assumptions for the rounded profiles of the sphere or cylinder are adopted under the condition that the contact radius (width) should be very small compared to the radius of the sphere or cylinder. However, a large contact radius (width) is often found in experiments even under a zero external loading. We aim at extending the plane strain JKR theory to the case with a large contact width. The relation between the external loading and the contact width is given. Solutions for the Hertz, JKR and rounded-profile cases are compared and analyzed. It is found that when the ratio of a/R is approximately larger than about 0.4, the parabolic assumptions in the Hertz and JKR theories are no longer valid and the exact rounded profile function should be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive contact model between an elastic cylinder and an elastic half space is studied in the present paper, in which an external pulling force is acted on the above cylinder with an arbitrary direction and the contact width is assumed to be asymmetric with respect to the structure. Solutions to the asymmetric model are obtained and the effect of the asymmetric contact width on the whole pulling process is mainly discussed. It is found that the smaller the absolute value of Dundurs' parameter beta or the larger the pulling angle theta, the more reasonable the symmetric model would be to approximate the asymmetric one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of contact angle and tube radius on the capillary-driven flow for circular cylindrical tubes is studied systematically by microgravity experiments using the drop tower. Experimental results show that the velocity of the capillary flow decreases monotonically with an increase in the contact angle. However, the time-evolution of the velocity of the capillary flow is different for different sized tubes. At the beginning of the microgravity period, the capillary flow in a thinner tube moves faster than that in a thicker tube, and then the latter overtakes the former. Therefore, there is an intersection between the curves of meniscus velocity vs microgravity time for two differently sized tubes. In addition, for two given sized tubes this intersection is delayed when the contact angle increases. The experimental results are analyzed theoretically and also supported by numerical computations.