828 resultados para Smart grid
Resumo:
Grid (or sieve) therapy ("Gitter-" oder "Siebtherapie"), spatially fractionated kilo- and megavolt X-ray therapy, was invented in 1909 by Alban Köhler, a radiologist in Wiesbaden, Germany. He tested it on several patients before 1913 using approximately 60-70kV Hittorf-Crookes tubes. Köhler pushed the X-ray tube's lead-shielded housing against a stiff grid of 1 mm-square iron wires woven 3.0-3.5mm on center, taped tightly to the skin over a thin chamois. Numerous islets unshielded by iron in the pressure-blanched skin were irradiated with up to about 6 erythema doses (ED). The skin was then thoroughly cleansed, disinfected, and bandaged; delayed punctate necrosis healed in several weeks. Although grid therapy was disparaged or ignored until the 1930s, it has been used successfully since then to shrink bulky malignancies. Also, advanced cancers in rats and mice have been mitigated or ablated using Köhler's concept since the early 1990s by unidirectional or stereotactic exposure to an array of nearly parallel microplanar (25-75μm-wide) beams of very intense, moderately hard (median energy approximately 100 keV) synchrotron-generated X rays spaced 0.1-0.4mm on center. Such beams maintain sharp edges at high doses well beneath the skin yet confer little toxicity. They could palliate some otherwise intractable malignancies, perhaps in young children too, with tolerable sequelae. There are plans for such studies in larger animals.
Resumo:
For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.
Resumo:
The variables involved in the equations that describe realistic synaptic dynamics always vary in a limited range. Their boundedness makes the synapses forgetful, not for the mere passage of time, but because new experiences overwrite old memories. The forgetting rate depends on how many synapses are modified by each new experience: many changes means fast learning and fast forgetting, whereas few changes means slow learning and long memory retention. Reducing the average number of modified synapses can extend the memory span at the price of a reduced amount of information stored when a new experience is memorized. Every trick which allows to slow down the learning process in a smart way can improve the memory performance. We review some of the tricks that allow to elude fast forgetting (oblivion). They are based on the stochastic selection of the synapses whose modifications are actually consolidated following each new experience. In practice only a randomly selected, small fraction of the synapses eligible for an update are actually modified. This allows to acquire the amount of information necessary to retrieve the memory without compromising the retention of old experiences. The fraction of modified synapses can be further reduced in a smart way by changing synapses only when it is really necessary, i.e. when the post-synaptic neuron does not respond as desired. Finally we show that such a stochastic selection emerges naturally from spike driven synaptic dynamics which read noisy pre and post-synaptic neural activities. These activities can actually be generated by a chaotic system.
Resumo:
OBJECTIVE: The standard heart-lung machine is a major trigger of systemic inflammatory response and the morbidity attributed to conventional extracorporeal circulation (CECC) is still significant. Reduction of blood-artificial surface contact and reduction of priming volume are principal aims in minimized extracorporeal circulation (MECC) cardiopulmonary bypass systems. The aim of this paper is to give an overview of the literature and to present our experience with the MECC-smart suction system. METHODS AND RESULTS: At our institution, 1799 patients underwent isolated coronary artery bypass grafting (CABG) surgery, 1372 with a MECC-smart suction system and 427 with CECC. All in-hospital data were assessed and the results were compared between the 2 groups. Patient characteristics and the distribution of EuroSCORE risk profile in our collective were similar between both groups. Average age in the MECC collective was 67.5 +/- 11.4 years and average EuroSCORE was 5.0 +/- 1.5. Average number of distal anastomoses was similar to the average number encountered in patients undergoing CABG surgery with CECC (3.3 +/- 1.0 for MECC versus 3.2 +/- 1.1 for CECC; P = ns). Myocardial protection is superior in MECC patients with lower postoperative maximal cTnI values (11.0 +/- 10.8 micromol/L for MECC versus 24.7 +/- 25.3 micromol/L for CECC; P < .05). Postoperative recovery was faster in patients operated on with the MECC-smart suction system and discharge from the hospital was earlier than for CECC patients (7.4 +/- 1.9 days for MECC versus 8.8 +/- 3.8 days for CECC; P < .05). CONCLUSIONS: The MECC-smart suction system is a safe perfusion technique for CABG surgery. In patients operated on with this system, the clinical outcome seems to be better than in patients operated on with CECC. This promising and less damaging perfusion technology has the potential to replace CECC systems in CABG surgery.
Resumo:
Reliable data transfer is one of the most difficult tasks to be accomplished in multihop wireless networks. Traditional transport protocols like TCP face severe performance degradation over multihop networks given the noisy nature of wireless media as well as unstable connectivity conditions in place. The success of TCP in wired networks motivates its extension to wireless networks. A crucial challenge faced by TCP over these networks is how to operate smoothly with the 802.11 wireless MAC protocol which also implements a retransmission mechanism at link level in addition to short RTS/CTS control frames for avoiding collisions. These features render TCP acknowledgments (ACK) transmission quite costly. Data and ACK packets cause similar medium access overheads despite the much smaller size of the ACKs. In this paper, we further evaluate our dynamic adaptive strategy for reducing ACK-induced overhead and consequent collisions. Our approach resembles the sender side's congestion control. The receiver is self-adaptive by delaying more ACKs under nonconstrained channels and less otherwise. This improves not only throughput but also power consumption. Simulation evaluations exhibit significant improvement in several scenarios
DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA
Resumo:
With the development and capabilities of the Smart Home system, people today are entering an era in which household appliances are no longer just controlled by people, but also operated by a Smart System. This results in a more efficient, convenient, comfortable, and environmentally friendly living environment. A critical part of the Smart Home system is Home Automation, which means that there is a Micro-Controller Unit (MCU) to control all the household appliances and schedule their operating times. This reduces electricity bills by shifting amounts of power consumption from the on-peak hour consumption to the off-peak hour consumption, in terms of different “hour price”. In this paper, we propose an algorithm for scheduling multi-user power consumption and implement it on an FPGA board, using it as the MCU. This algorithm for discrete power level tasks scheduling is based on dynamic programming, which could find a scheduling solution close to the optimal one. We chose FPGA as our system’s controller because FPGA has low complexity, parallel processing capability, a large amount of I/O interface for further development and is programmable on both software and hardware. In conclusion, it costs little time running on FPGA board and the solution obtained is good enough for the consumers.
Resumo:
The widespread of low cost embedded electronics makes it easier to implement the smart devices that can understand either the environment or the user behaviors. The main object of this project is to design and implement home use portable smart electronics, including the portable monitoring device for home and office security and the portable 3D mouse for convenient use. Both devices in this project use the MPU6050 which contains a 3 axis accelerometer and a 3 axis gyroscope to sense the inertial motion of the door or the human hands movement. For the portable monitoring device for home and office security, MPU6050 is used to sense the door (either home front door or cabinet door) movement through the gyroscope, and Raspberry Pi is then used to process the data it receives from MPU6050, if the data value exceeds the preset threshold, Raspberry Pi would control the USB Webcam to take a picture and then send out an alert email with the picture to the user. The advantage of this device is that it is a small size portable stand-alone device with its own power source, it is easy to implement, really cheap for residential use, and energy efficient with instantaneous alert. For the 3D mouse, the MPU6050 would use both the accelerometer and gyroscope to sense user hands movement, the data are processed by MSP430G2553 through a digital smooth filter and a complementary filter, and then the filtered data will pass to the personal computer through the serial COM port. By applying the cursor movement equation in the PC driver, this device can work great as a mouse with acceptable accuracy. Compared to the normal optical mouse we are using, this mouse does not need any working surface, with the use of the smooth and complementary filter, it has certain accuracy for normal use, and it is easy to be extended to a portable mouse as small as a finger ring.
Resumo:
In addition to multi-national Grid infrastructures, several countries operate their own national Grid infrastructures to support science and industry within national borders. These infrastructures have the benefit of better satisfying the needs of local, regional and national user communities. Although Switzerland has strong research groups in several fields of distributed computing, only recently a national Grid effort was kick-started to integrate a truly heterogeneous set of resource providers, middleware pools, and users. In the following. article we discuss our efforts to start Grid activities at a national scale to combine several scientific communities and geographical domains. We make a strong case for the need of standards that have to be built on top of existing software systems in order to provide support for a heterogeneous Grid infrastruc
Resumo:
Die Europäische Gießereiindustrie besteht zu einem großen Teil aus Klein- und Mittelständischen Unternehmen, die in Summe einen bedeutenden Anteil der produzierenden Industrie Europas bilden. Traditionell sind diese Unternehmen lediglich in einem geringen Umfang an Forschungs- und Entwicklungsaktivitäten beteiligt, was vielerorts den Einsatz veralteter Technologie und der damit verbundenen Prozesse zur Folge hat.