931 resultados para Small angle X-ray scattering
Resumo:
Material discrimination based on conventional or dual energy X-ray computed tomography (CT) imaging can be ambiguous. X-ray diffraction imaging (XDI) can be used to construct diffraction profiles of objects, providing new molecular signature information that can be used to characterize the presence of specific materials. Combining X-ray CT and diffraction imaging can lead to enhanced detection and identification of explosives in luggage screening. In this work we are investigating techniques for joint reconstruction of CT absorption and X-ray diffraction profile images of objects to achieve improved image quality and enhanced material classification. The initial results have been validated via simulation of X-ray absorption and coherent scattering in 2 dimensions.
Resumo:
X-ray spectra of the late-type star AB Dor obtained with the XMM-Newton satellite are analyzed. AB Dor was particularly active during the observations. An emission measure reconstruction technique is employed to analyze flare and quiescent spectra, with emphasis on the Fe XVII 15 - 17 angstrom wavelength region. The Fe XVII 16.78 angstrom/ 15.01 angstrom line ratio increases significantly in the hotter flare plasma. This change in the ratio is opposite to the theoretical predictions and is attributed to the scattering of 15.01 angstrom line photons from the line of sight. The escape probability technique indicates an optical depth of approximate to 0.4 for the 15.01 angstrom line. During the flare, the electron density is 4.4(-1.6)(+2.7) x 10(10) cm(-3), and the fractional Fe abundance is 0.5 +/- 0.1 of the solar photospheric value Using these parameters, a path length of approximate to 8000 km is derived. There is no evidence of opacity in the quiescent X-ray spectrum of the star.
Resumo:
The primary objective of this work is the analysis and interpretation of coronal observations of Capella obtained in 1999 September with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory and the Extreme Ultraviolet Explorer (EUVE). He-like lines of O (O vii) are used to derive a density of 1.7 x 10(10) cm(-3) for the coronae of the binary, consistent with the upper limits derived from Fe xxi, Ne ix and Mg xi line ratios. Previous estimates of the electron density based on Fe xxi should be considered as upper limits. We construct emission measure distributions and compare the theoretical and observed spectra to conclude that the coronal material has a temperature distribution that peaks around 4-6 MK, implying that the coronae of Capella were significantly cooler than in the previous years. In addition, we present an extended line list with over 100 features in the 5-24 Angstrom wavelength range, and find that the X-ray spectrum is very similar to that of a solar flare observed with SMM. The observed to theoretical Fe xvii 15.012-Angstrom line intensity reveals that opacity has no significant effect on the line flux. We derive an upper limit to the optical depth, which we combine with the electron density to derive an upper limit of 3000 km for the size of the Fe xvii emitting region. In the same context, we use the Si iv transition region lines of Capella from HST/Goddard High-Resolution Spectrometer observations to show that opacity can be significant at T = 10(5) K, and derive a path-length of approximate to 75 kin for the transition region. Both the coronal and transition region observations are consistent with very small emitting regions, which could be explained by small loops over the stellar surfaces.
Resumo:
Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and UV irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains are numerically computed by solving the coagulation equation for settling dust particles, with the result that the mass and total surface area of dust grains per unit volume of the gas in the disks are very small, except at the midplane. The H2 level populations and line emission are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk and in the surface layer, while the UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-rayinduced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the dust properties. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient. This makes the level populations change from LTE to non-LTE distributions, which results in changes to the line ratios. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.
Resumo:
A curved crystal spectrometer in Johann configuration has been implemented on MAST to obtain values for electron temperature, ion temperature and toroidal velocity. The spectrometer is used to examine medium Z impurities in the soft x-ray region by utilising a Silicon (111) crystal, bent using a 4 pin bending jig, and a CCD detector (Deltat=8 ms). Helium-like Argon emissions from 3.94 to 4.00 Angstrom have been examined using a crystal radius of 859.77 mm. The Bragg angle and crystal radius can be adjusted with relative ease. The spectrometer can be scanned toroidally and poloidally to include a radial view which facilitates absolute velocity measurements by assuming radial velocity =0. Doppler shifts of 2.3x10(-5) Angstrom (1.8 kms(-1)) can be measured. The line of sight is shared with a neutral particle analyzer, which enables in situ ion temperature comparisons. Ray tracing has been used for the development of new imaging spectrometers, using spherical/toroidal crystals, planned to be implemented on MAST. (C) 2004 American Institute of Physics.
Resumo:
Driven by a double 75 ps pulse with 2.2 ns separation, saturated operation of nickel-like Ag, In, Sn, and Sm X-ray lasers have been demonstrated with only 75 J drive energy on target. The variation of X-ray laser output with target length is found to fit well to a simple model for an amplified spontaneous emission (ASE) laser including saturation. Small signal gains of similar to 10 cm(-1), effective gain length products of similar to 18, and saturation irradiance of (1-5)x 10(10) W/cm(2) are measured for these lasers using a fitting procedure. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The spatial coherence of a nanosecond pulsed germanium collisionally excited x-ray laser is measured experimentally for three target configurations. The diagnostic is based on Young's slit interference fringes with a dispersing element to resolve the 23.2- and 23.6-nm spectral lines. Target configurations include a double-slab target, known as the injector, and geometries in which the injector image is image relayed to seed either an additional single-slab target or a second double-slab target. A special feature of this study is the observation of the change in the apparent source size with angle of refraction across the diverging laser beam. Source sizes derived with a Gaussian source model decrease from 44 mu m for the injector target by a variable factor of as much as 2, according to target configuration, for beams leaving the additional amplifiers after strong refraction in the plasma. (C) 1998 Optical Society of America [S0740-3224(98)00810-8].
Resumo:
Saturation of a low pump energy x-ray laser utilizing a transient inversion mechanism on the 3p-3s transition at 32.63 nm in Ne-like Ti has been demonstrated. A close to saturation amplification was simultaneously achieved for the 3d-3p, J=1-->1 transition at 30.15 nm. Small signal effective transient gain coefficients of g similar to 46 and similar to 35 cm(-1) and gain-length products of 16.7 and 16.9 for these lines were obtained. Experiments demonstrate that it is possible to achieve saturated laser action in a transient regime with Ne-like Ti for a pump energy as low as similar to 5 J.
Resumo:
The transient-excitation pumping scheme, in which a picosecond duration pulse rapidly heats the plasma preformed by a low-intensity nanosecond pulse, was used to pump the Ne-like germanium, J = 0-1 transition at 19.6 nm. A small-signal gain coefficient of 30 cm(-1) was measured for targets less than or equal to 5 mm long. (C) 1998 Optical Society of America.
Resumo:
The time-integrated spatial coherence of neonlike germanium x-ray laser radiation has been studied with a new dispersing coherence diagnostic. Angle-dependent spatial coherence data are recorded by sampling the diverging beam at each lasing wavelength in several directions simultaneously. Measurements of the spatial coherence, and hence effective source sizes, relevant to the output beams from double-slab targets for the J = 2-1 spectral lines at wavelengths 28.6, 23.6, and 23.2 nm and for the J = 0-1 line at 19.6 nm show differences, which indicate different conditions in the plasma volume amplifying these emissions. Targets are pumped by subnanosecond pulse drivers, with and without a prepulse, but 19.6 nm emission is detected only in the prepulsed case. The differences are discussed in terms of the time evolution of the spectral lines. (C) 1997 Optical Society of America.
Resumo:
We perform multidimensional radiative transfer simulations to compute spectra for a hydrodynamical simulation of a line-driven accretion disc wind from an active galactic nucleus. The synthetic spectra confirm expectations from parametrized models that a disc wind can imprint a wide variety of spectroscopic signatures including narrow absorption lines, broad emission lines and a Compton hump. The formation of these features is complex with contributions originating from many of the different structures present in the hydrodynamical simulation. In particular, spectral features are shaped both by gas in a successfully launched outflow and in complex flows where material is lifted out of the disc plane but ultimately falls back. We also confirm that the strong Fe Ka line can develop a weak, red-skewed line wing as a result of Compton scattering in the outflow. In addition, we demonstrate that X-ray radiation scattered and reprocessed in the flow has a pivotal part in both the spectrum formation and determining the ionization conditions in the wind. We find that scattered radiation is rather effective in ionizing gas which is shielded from direct irradiation from the central source. This effect likely makes the successful launching of a massive disc wind somewhat more challenging and should be considered in future wind simulations. © 2010 The Authors. Journal compilation © 2010 RAS.
Resumo:
We use a multidimensional Monte Carlo code to compute X-ray spectra for a variety of active galactic nucleus (AGN) disc-wind outflow geometries. We focus on the formation of blueshifted absorption features in the Fe K band and show that line features similar to those which have been reported in observations are often produced for lines of sight through disc-wind geometries. We also discuss the formation of other spectral features in highly ionized outflows. In particular, we show that, for sufficiently high wind densities, moderately strong Fe K emission lines can form and that electron scattering in the flow may cause these lines to develop extended red wings. We illustrate the potential relevance of such models to the interpretation of real X-ray data by comparison with observations of a well-known AGN, Mrk 766. Journal compilation © 2008 RAS.
Resumo:
High-velocity outflows from supermassive black holes have been invoked to explain the recent identification of strong absorption features in the hard X-ray spectra of several quasars. Here, Monte Carlo radiative transfer calculations are performed to synthesize X-ray spectra from models of such flows. It is found that simple, parametric biconical outflow models with plausible choices for the wind parameters predict spectra that are in good qualitative agreement with observations in the 2-10 keV band. The influence on the spectrum of both the mass-loss rate and opening angle of the flow are considered: the latter is important since photon leakage plays a significant role in establishing an ionization gradient within the flow, a useful discriminant between spherical and conical outflow for this and other applications. Particular attention is given to the bright quasar PG 1211+143 for which constraints on the outflow geometry and mass-loss rate are discussed subject to the limitations of the currently available observational data.
Resumo:
Ultraviolet and X-ray observations show evidence of outflowing gas around many active galactic nuclei. It has been proposed that some of these outflows are driven off gas infalling towards the central supermassive black hole. We perform radiative transfer calculations to compute the gas ionization state and the emergent X-ray spectra for both two- and three-dimensional (3D) hydrodynamical simulations of this outflow-from-inflow scenario. By comparison with observations, our results can be used to test the theoretical models and guide future numerical simulations. We predict both absorption and emission features, most of which are formed in a polar funnel of relatively dense (10 -10 g cm ) outflowing gas. This outflow causes strong absorption for observer orientation angles of ?35°. Particularly in 3D, the strength of this absorption varies significantly for different lines of sight owing to the fragmentary structure of the gas flow. Although infalling material occupies a large fraction of the simulation volume, we do not find that it imprints strong absorption features in the X-ray spectra since the ionization state is predicted to be very high. Thus, an absence of observed inflow absorption features does not exclude the models. The main spectroscopic consequence of the infalling gas is a Compton-scattered continuum component that partially re-fills the absorption features caused by the outflowing polar funnel. Fluorescence and scattering in the outflow are predicted to give rise to several emission features including a multicomponent Fe Ka emission complex for all observer orientations. For the hydrodynamical simulations considered, we predict both ionization states and column densities for the outflowing gas that are too high to be quantitatively consistent with well-observed X-ray absorption systems. Nevertheless, our results are qualitatively encouraging and further exploration of the model parameter space is warranted. Higher resolution hydrodynamic simulations are needed to determine whether the outflows fragment on scales unresolved in our current study, which may yield the denser lower ionization material that could reconcile the models and the observations. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
Resumo:
We accurately determine the fundamental system parameters of the neutron star X-ray transient Cen X-4 solely using phase-resolved high-resolution UV-Visual Echelle Spectrograph spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened, phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disc. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755 ± 0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32^{+8}_{-2} degrees. Combining these values with the results of the radial-velocity study gives a neutron star mass of 1.94^{+0.37}_{-0.85}M⊙ consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly rotating isolated stars, is present on the Northern hemisphere of the K7 secondary star and we estimate that ~4 percent of the total surface area of the donor star is covered with spots.This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.