962 resultados para Slope efficiencies
Resumo:
It is important to have better evaluation and understanding of the motor neuron physiology, with the goal to early and objectively diagnose and treat patients with neurodegenerative pathologies. The Compound Muscle Action Potential (CMAP) scan is a non-invasive diagnosis technique for neurodegenerative pathologies, such as ALS, and enables a quick analysis of the muscle action potentials in response to motor nerve stimulation. This work aims to study the influence of different pulse modulated waveforms in peripheral nerve excitability by CMAP scan technique on healthy subjects. A total of 13 healthy subjects were submitted to the same test. The stimuli were applied in the medium nerve on the right wrist and electromyography signal collected on the Abductor Pollicis Brevis (APB) muscle surface on the right thumb. Stimulation was performed with an increasing intensities range from 4 to 30 mA, with varying steps, 3 stimuli per step. The procedure was repeated 4 times per subject, each repetition using a different single pulse stimulation waveform: monophasic square, monophasic triangular, monophasic quadratic and biphasic square. Results were retrieved from the averaging of the stimuli on each current intensity step. The square pulse needs less current intensity to generate the same response amplitude regarding the other waves and presents a more steep curve slope and this effect is gradually decreasing for the triangular and quadratic pulse,respectively, being the difference even more evident regarding the biphasic pulse. The control of the waveform stimulation pulse allows varying the stimulusresponse curve slope.
Resumo:
The Keystone XL has a big role for transforming Canadian oil to the USA. The function of the pipeline is decreasing the dependency of the American oil industry on other countries and it will help to limit external debt. The proposed pipeline seeks the most suitable route which cannot damage agricultural and natural water recourses such as the Ogallala Aquifer. Using the Geographic Information System (GIS) techniques, the suggested path in this study got extremely high correct results that will help in the future to use the least cost analysis for similar studies. The route analysis contains different weighted overlay surfaces, each, was influenced by various criteria (slope, geology, population and land use). The resulted least cost path routes for each weighted overlay surface were compared with the original proposed pipeline and each displayed surface was more effective than the proposed Keystone XL pipeline.
Resumo:
AbstractINTRODUCTION:Despite chemical and physical vector control strategies, persistent infestations of Triatoma sordida have been reported in a large part of Minas Gerais, Brazil, and the cause for this is little investigated. We aimed to characterize the deltamethrin toxicological profile in peridomestic T. sordidapopulations from Triângulo Mineiro area of Minas Gerais.METHODS:Susceptibility to deltamethrin was assessed in seventeen peridomestic T. sordida populations. Serial dilutions of deltamethrin in acetone (0.2µL) were topically applied on the first instar nymphs (F1; five days old; fasting weight, 1.2 ± 0.2mg). Dose response results were analyzed using Probit software, and the lethal doses, slope and resistance ratios were determined. Qualitative tests were also performed.RESULTS:The deltamethrin susceptibility profile of T. sordida populations revealed resistance ratios ranging from 0.84 to 2.8. The percentage mortality in response to a diagnostic dose was 100.0% in all populations.CONCLUSIONS:From our results, the lack of resistance to insecticides but persistent T. sordida infestations in the Triângulo Mineiro area may be because of: 1) environmental degradation facilitating dispersion of T. sordida , allowing colonization in artificial ecotopes; 2) operational failures; and 3) complexity of the peridomicile in the study area.These variables are being investigated.
Resumo:
Calcium carbonate biomineralization is a self-assembly process that has been studied to be applied in the biomedical field to encapsulate biomolecules. Advantages of engineering mineral capsules include improved drug loading efficiencies and protection against external environment. However, common production methods result in heterogeneous capsules and subject biomolecules to heat and vibration which cause irreversible damage. To overcome these issues, a microfluidic device was designed, manufactured and tested in terms of selectivity for water and oil to produce a W/O/W emulsion. During the development of this work there was one critical challenge: the selective functionalization in closed microfluidic channels. Wet chemical oxidation of PDMS with 1M NaOH, confirmed by FTIR, followed by adsorption of polyelectrolytes - PDADMAC/PSS - confirmed by UV-Vis and AFM results, render the surface of PDMS hydrophilic. UV-Vis spectroscopy also confirmed that this modification did not affect PDMS optical properties, making possible to monitor fluids and droplets. More important, with this approach PDMS remains hydrophilic over time. However, due to equipment constrains selectivity in microchannels was not achieved. Therefore, emulsion studies took place with conventional methods. Several systems were tried, with promising results achieved with CaCO3 in-situ precipitation, without the use of polymers or magnesium. This mineral stabilizes oil droplets in water, but not in air due to incomplete capsule formation.
Resumo:
In this thesis was investigated the radiation hardness of the building blocks of a future flexible X-ray sensor system. The characterized building blocks for the pixel addressing and signal amplification electronics are high mobility semiconducting oxide transistors (HMSO-TFTs) and organic transistors (OTFTs), whereas the photonic detection system is based on organic semiconducting single crystals (OSSCs). TFT parameters such as mobility, threshold voltage and subthreshold slope were measured as function of cumulative X-ray dose. Instead for OSSCs conductivity and X-ray sensitivity were analysed after various radiation steps. The results show that ionizing radiation does not lead to degradation in HMSO-TFTs. Instead OTFTs show instability in mobility which is reduced up to 73% for doses of 1 kGy. OSSC demonstrate stable detector properties for the tested total dose range. As conclusion, HMSO-TFTs and OSSCs can be readily employed in the X-ray detector system allowing operation for total doses exceeding 1 kGy of ionizing radiation.
Resumo:
Scarcity of fuels, changes in environmental policy and in society increased the interest in generating electric energy from renewable energy sources (RES) for a sustainable energy supply in the future. The main problem of RES as solar and wind energy, which represent a main pillar of this transition, is that they cannot supply constant power output. This results inter alia in an increased demand of backup technologies as batteries to assure electricity system safety. The diffusion of energy storage technologies is highly dependent on the energy system and transport transition pathways which might lead to a replacement or reconfiguration of embedded socio-technical practices and regimes (by creating new standards or dominant designs, changing regulations, infrastructure and user patterns). The success of this technology is dependent on hardly predictable future technical advances, actor preferences, development of competing technologies and designs, diverging interests of actors, future cost efficiencies, environmental performance, the evolution of market demand and design and evolution of our society.
Resumo:
Cyanobacteria are photoautotrophic microorganisms with great potential for the biotechnological industry due to their low nutrient requirements, photosynthetic capacities and metabolic plasticity. In biotechnology, the energy sector is one of the main targets for their utilization, especially to produce the so called third generation biofuels, which are regarded as one of the best replacements for petroleum-based fuels. Although, several issues could be solved, others arise from the use of cyanobacteria, namely the need for high amounts of freshwater and contamination/predation by other microorganisms that affect cultivation efficiencies. The cultivation of cyanobacteria in seawater could solve this issue, since it has a very stable and rich chemical composition. Among cyanobacteria, the model microorganism Synechocystis sp. PCC 6803 is one of the most studied with its genome fully sequenced and genomic, transcriptomic and proteomic data available to better predict its phenotypic behaviors/characteristics. Despite suitable for genetic engineering and implementation as a microbial cell factory, Synechocystis’ growth rate is negatively affected by increasing salinity levels. Therefore, it is important to improve. To achieve this, several strategies involving the constitutive overexpression of the native genes encoding the proteins involved in the production of the compatible solute glucosylglycerol were implemented, following synthetic biology principles. A preliminary transcription analysis of selected mutants revealed that the assembled synthetic devices are functional at the transcriptional level. However, under different salinities, the mutants did not show improved robustness to salinity in terms of growth, compared with the wild-type. Nevertheless, some mutants carrying synthetic devices appear to have a better physiological response under seawater’s NaCl concentration than in 0% (w/v) NaCl.
Resumo:
Some of the trends and characteristics of the isotopic composition oh precipitation in tropical stations are discussed. Stations in small Pacific islands show a variation with latitude, with lower 8-values between 15°N and 1S°S and higher values at higher. Inland stations are depleted in heavy isotopes with respect to coastal stations but sometimes this continental effect is rather complex, as f,or instance in África. Mean monthly 8-values show a remarkable correlation with the amount of precipitation, but the slope variations do not show a clear dependence on the mean long term 8-value,as should be expected theoretically. In Southern American stations the seasonal variations of the meanmonthly 5-values are correlated and they are greater in inland stations due to con-tinentaly. The possible effects of recycling of water vapour by evapotranspiration are also discussed.
Resumo:
The geomorphological materials and forms of the Maraca area of Roraima, Brazil are described, an their sgnificance for land development examined. Significant contrasts are noted in areas presently under rainforest and savanna vegetation. Lateritic gravels and extensive shetwash accumulations in savanna areas constrast with incipient or absent plinthite development, few gravels and limited evidence of colluvium under rainforest. Terrain is in general relatively highly-dissected. Slope profiles are characterised, particularly within the savanna zone, by a relatively steep lower concavity. These contrasts are sharply-demarcated by the present savanna/rainforest bondary, unexpectedly in view of the generally accepted hypothesis of repeated contraction an expansion of Amazonian rainforest throughout the Pleistocene. It is concluded that geomorphological conditions in the Maraca area are not favorable for land develoment.
Resumo:
Pharmaceuticals and personal care products (PPCPs) are widely used on a daily basis. After their usage they reach the wastewater treatment plants (WWTPs). These compounds have different physico-chemical characteristics, which makes them difficult to completely remove in the WWTPs, througth conventional treatments. Currently, there is no legislation regarding PPCPs thresholds in effluent discharge. But, even at vestigial concentrations, these compounds enclose environmental risks due to, e.g., endocrine disruption potential. There is a need of alternative techniques for their removal in WWTPs. The main goal of this work was to assess the use of electrodialytic (ED) process to remove PPCPs from the effluent to be discharged. A two-compartment ED cell was used testing (i) the effluent position in the cell (anode and cathode compartment); (ii) the use of anion (AEM) and cation exchange membrane (CEM); (iii) the treatment period (6, 12 and 24 hours); (iv) effluent recirculation and current steps; (v) the feasibility of sequential treatments. Phosphorus (P) removal from effluent and energetic costs associated to the process were also evaluated. Five PPCPs were studied – caffeine (CAF), bisphenol A (BPA), 17 β-estradiol (E2), ethinyl estradiol (EE2) and oxybenzone (MBPh). The ED process showed to be effective in the removal when effluent is in the anode compartment. Oxidation is suggested to be the main removal process, which was between 88 and 96%, for all the compounds, in 6 hours. Nevertheless, the presence of intermediates and/or by-products was also observed in some cases. Effluent recirculation should have a retention time in the ED cell big enough to promote removal whereas the current steps (effluent in anode compartment) slightly increased removal efficiencies (higher than 80% for all PPCPs). The sequential set of ED treatment (effluent in anode compartment) showed to be effective during both periods with a removal percentage between 80 and 95% and 73 to 88% in the case of AEM and CEM, respectively. Again, the main removal process is strongly suggested to be oxidation in the anode compartment. However, there was an increase of BOD5 and COD, which might be explained by effluent spiking, these parameters limiting the effluent discharge. From these treatments, the use of AEM, enhanced the P removal from effluent to minimize risk of eutrophication. Energetic costs of the best set-up (6 hours) are approximately 0,8€/m3 of wastewater, a value considered low, attending to the prices of other treatment processes.
Resumo:
Rockburst is characterized by a violent explosion of a block causing a sudden rupture in the rock and is quite common in deep tunnels. It is critical to understand the phenomenon of rockburst, focusing on the patterns of occurrence so these events can be avoided and/or managed saving costs and possibly lives. The failure mechanism of rockburst needs to be better understood. Laboratory experiments are undergoing at the Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUE) of Beijing and the system is described. A large number of rockburst tests were performed and their information collected, stored in a database and analyzed. Data Mining (DM) techniques were applied to the database in order to develop predictive models for the rockburst maximum stress (σRB) and rockburst risk index (IRB) that need the results of such tests to be determined. With the developed models it is possible to predict these parameters with high accuracy levels using data from the rock mass and specific project.
Resumo:
In this work, an empirical system was developed to obtain a quality index for rock slopes in road infrastructures, named Slope Quality Index (SQI), and it was applied to a set of real slopes. The SQI is supported in nine factors affecting slope stability that contemplate the evaluation of different parameters. Consequently, each factor is classified by degree of importance and influence by assigned weights. These weights were established through a statistical analysis of replies to a survey that was distributed to several experienced professionals in the field. The proposed SQI varies between 1 and 5, corresponding to slopes in very good and very bad condition state, respectively. Besides the advantage linked to a quantitative and qualitative evaluation of slopes, the SQI also allows identifying the most critical factors on the slope stability, which is a fundamental issue for an efficient management of the slope network in the road infrastructure, namely in the planning of conservation and maintenance operations.
Resumo:
Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb−1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s√=8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ∗→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3(stat)±1.6(sys)pb. The measurements are compared to state-of-the-art predictions.
Resumo:
Forest regrowth occupies an extensive and increasing area in the Amazon basin, but accurate assessment of the impact of regrowth on carbon and nutrient cycles has been hampered by a paucity of available allometric equations. We develop pooled and species-specific equations for total aboveground biomass for a study site in the eastern Amazon that had been abandoned for 15 years. Field work was conducted using randomized branch sampling, a rapid technique that has seen little use in tropical forests. High consistency of sample paths in randomized branch sampling, as measured by the standard error of individual paths (14%), suggests the method may provide substantial efficiencies when compared to traditional procedures. The best fitting equations in this study used the traditional form Y=a×DBHb, where Y is biomass, DBH is diameter at breast height, and a and b are both species-specific parameters. Species-specific equations of the form Y=a(BA×H), where Y is biomass, BA is tree basal area, H is tree height, and a is a species-specific parameter, fit almost as well. Comparison with previously published equations indicated errors from -33% to +29% would have occurred using off-site relationships. We also present equations for stemwood, twigs, and foliage as biomass components.
Resumo:
Dissertação de mestrado integrado em Arquitectura