951 resultados para Slice Topology
Resumo:
Achieving stabilization of telomeric DNA in G-quadruplex conformation by Various organic compounds has been an important goal for the medicinal chemists seeking to develop new anticancer agents. Several compounds are known to stabilize G-quadruplexes. However, relatively few are known to induce their formation and/or alter the topology, of the preformed quadruplex DNA. Herein, four compounds having the 1,3-phenylene-bis(piperazinyl benzimidazole) unit as a basic skeleton have been synthesized, and their interactions with the 24-mer telomeric DNA sequences from Tetrahymena thermophilia d(T(2)G(4))(4) have been investigated using high-resolution techniques Such as circular dichroism (CD) spectropolarimetry, CD melting, emission spectroscopy, and polyacrylamide gel electrophoresis. The data obtained, in the presence of one of three ions (Li+, Na+, or K+), indicate that all the new compounds have a high affinity for G-quadruplex DNA, and the strength of the binding with G-quadruplex depends on (1) phenyl ring substitution, (ii) the piperazinyl side chain, and (iii) the type of monovalent cation present in the buffer. Results further Suggest that these compounds are able to abet the conversion of the Intramolecular quadruplex into parallel stranded intermolecular G-quadruplex DNA. Notably, these compounds are also capable of inducing and stabilizing the parallel stranded quadruplex from randomly structured DNA in the absence of any stabilizing cation. The kinetics of the structural changes Induced by these compounds could be followed by recording the changes in the CD signal as a function of time. The implications of the findings mentioned above are discussed in this paper.
Resumo:
The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein coding gene of 876 nt, and 150 nt in the VP1/2A junction region. The analysis revealed a succession of dominant sublineages within a major genotype. The temporally earlier genotypes had been replaced by a genetically homogenous lineage that has been circulating in Europe since the late 1970s. The same genotype was found by other research groups in North America and Australia. Globally, other cocirculating genetic lineages also exist. The prevalence of a dominant genotype makes E-30 different from other previously studied HEVs, such as polioviruses and coxsackieviruses B4 and B5, for which several coexisting genetic lineages have been reported. The second part of this work deals with molecular epidemiology of human rhinoviruses (HRVs). A total of 61 field isolates were studied in the 420-nt stretch in the capsid coding region of VP4/VP2. The isolates were collected from children under two years of age in Tampere, Finland. Sequences from the clinical isolates clustered in the two previously known phylogenetic clades. Seasonal clustering was found. Also, several distinct serotype-like clusters were found to co-circulate during the same epidemic season. Reappearance of a cluster after disappearing for a season was observed. The molecular epidemiology of the analyzed strains turned out to be complex, and we decided to continue our studies of HRV. Only five previously published complete genome sequences of HRV prototype strains were available for analysis. Therefore, all designated HRV prototype strains (n=102) were sequenced in the VP4/VP2 region, and the possibility of genetic typing of HRV was evaluated. Seventy-six of the 102 prototype strains clustered in HRV genetic group A (HRV-A) and 25 in group B (HRV-B). Serotype 87 clustered separately from other HRVs with HEV species D. The field strains of HRV represented as many as 19 different genotypes, as judged with an approximate demarcation of a 20% nt difference in the VP4/VP2 region. The interserotypic differences of HRV were generally similar to those reported between different HEV serotypes (i.e. about 20%), but smaller differences, less than 10%, were also observed. Because some HRV serotypes are genetically so closely related, we suggest that the genetic typing be performed using the criterion "the closest prototype strain". This study is the first systematic genetic characterization of all known HRV prototype strains, providing a further taxonomic proposal for classification of HRV. We proposed to divide the genus Human rhinoviruses into HRV-A and HRV-B. The final part of the work comprises a phylogenetic analysis of a subset (48) of HRV prototype strains and field isolates (12) in the nonstructural part of the genome coding for the RNA-dependent RNA polymerase (3D). The proposed division of the HRV strains in the species HRV-A and HRV-B was also supported by 3D region. HRV-B clustered closer to HEV species B, C, and also to polioviruses than to HRV-A. Intraspecies variation within both HRV-A and HRV-B was greater in the 3D coding region than in the VP4/VP2 coding region, in contrast to HEV. Moreover, the diversity of HRV in 3D exceeded that of HEV. One group of HRV-A, designated HRV-A', formed a separate cluster outside other HRV-A in the 3D region. It formed a cluster also in the capsid region, but located within HRV-A. This may reflect a different evolutionary history of distinct genomic regions among HRV-A. Furthermore, the tree topology within HRV-A in the 3D region differed from that in the VP4/VP2, suggesting possible recombination events in the evolution of the strains. No conflicting phylogenies were observed in any of the 12 field isolates. Possible recombination was further studied using the Similarity and Bootscanning analyses of the complete genome sequences of HRV available in public databases. Evidence for recombination among HRV-A was found, as HRV2 and HRV39 showed higher similarity in the nonstructural part of the genome. Whether HRV2 and HRV39 strains - and perhaps also some other HRV-A strains not yet completely sequenced - are recombinants remains to be determined.
Resumo:
In the present study, we identified a novel asthma susceptibility gene, NPSR1 (neuropeptide S receptor 1) on chromosome 7p14.3 by the positional cloning strategy. An earlier significant linkage mapping result among Finnish Kainuu asthma families was confirmed in two independent cohorts: in asthma families from Quebec, Canada and in allergy families from North Karelia, Finland. The linkage region was narrowed down to a 133-kb segment by a hierarchial genotyping method. The observed 77-kb haplotype block showed 7 haplotypes and a similar risk and nonrisk pattern in all three populations studied. All seven haplotypes occur in all three populations at frequences > 2%. Significant elevated relative risks were detected for elevated total IgE (immunoglobulin E) or asthma. Risk effects of the gene variants varied from 1.4 to 2.5. NPSR1 belongs to the G protein-coupled receptor (GPCR) family with a topology of seven transmembrane domains. NPSR1 has 9 exons, with the two main transcripts, A and B, encoding proteins of 371 and 377 amino acids, respectively. We detected a low but ubiquitous expression level of NPSR1-B in various tissues and endogenous cell lines while NPSR1-A has a more restricted expression pattern. Both isoforms were expressed in the lung epithelium. We observed aberrant expression levels of NPSR1-B in smooth muscle in asthmatic bronchi as compared to healthy. In an experimental mouse model, the induced lung inflammation resulted in elevated Npsr1 levels. Furthermore, we demonstrated that the activation of NPSR1 with its endogenous agonist, neuropeptide S (NPS), resulted in a significant inhibition of the growth of NPSR1-A overexpressing stable cell lines (NPSR1-A cells). To determine which target genes were regulated by the NPS-NPSR1 pathway, NPSR1-A cells were stimulated with NPS, and differentially expressed genes were identified using the Affymetrix HGU133Plus2 GeneChip. A total of 104 genes were found significantly up-regulated and 42 down-regulated 6 h after NPS administration. The up-regulated genes included many neuronal genes and some putative susceptibility genes for respiratory disorders. By Gene Ontology enrichment analysis, the biological process terms, cell proliferation, morphogenesis and immune response were among the most altered. The expression of four up-regulated genes, matrix metallopeptidase 10 (MMP10), INHBA (activin A), interleukin 8 (IL8) and EPH receptor A2 (EPHA2), were verified and confirmed by quantitative reverse-transcriptase-PCR. In conclusion, we identified a novel asthma susceptibility gene, NPSR1, on chromosome 7p14.3. NPS-NPSR1 represents a novel pathway that regulates cell proliferation and immune responses, and thus may have functional relevance in the pathogenesis of asthma.
Resumo:
Reverie I is a large-scale public art work commissioned by the Brisbane City Council for permanent installation on the Gardens Point Road Plinth adjacent to QUT Gardens Point campus in Brisbane. The work forms part of the artist's ongoing exploration of the methodology of self-portraiture and amorphous form. In this work, sculpted curls of hair have been assembled according to contours of its constituent cast panels - their capacity to nest with one another determined the final form of the work. The resulting mass of curls resembles both an oversized wig, a withered mulberry and a leaden cloud to invoke notions of movement, reflection and temporality. From the didactic panel: "The curls of Reverie I are derived from 18th century sculptural portraiture. The twisting forms of the highly styled wig known as a periwig were abstracted and inventive, while also bestowing an air of intellectual authority. Curls also evoke two aspects of this particular site: the erratic movement of water associated with the complex tidal movements of Brisbane River, and a state of mental reflection relevant to both the nearby university grounds (where intellectual work takes place) and the riverside pathway (a site for daydreaming)."
Resumo:
'Catacoustics' was an exhibition of sculptural assemblages and photographs that continues my exploration of self-portraiture and the sculptural object. The exhibition was presented as part of the 2015 MetroArts curated exhibition program (Curator: Amy-Clare McCarthy). The work specifically extends the formal vocabulary of my studio practice to incorporate a replica casting of the Ian Fairweather memorial rock at Bribie Island, Queensland. The resulting casts are combined with a series of heptagonal forms derived from the memorial plinth and other sundry components taken from previous exhibitions.,The final arrangement of this diverse field of elements are determined in part by their formal properties (e.g. their capacity to nest, prop, balance, support each other) frequently also taking the horizontal/vertical and the orientation of surrounding walls as formal cues. In so doing, the body of work acts as a manifestation of object-agency. Within this studio methodology, practice is theorised as a site for the interplay of non-human agents. The resulting exhibition thus acts a meditation on the ontology of art practice, conceived as a 'topology' - a fluid network of relationships forged largely by objects.
Resumo:
The NUVIEW software package allows skeletal models of any double helical nucleic acid molecule to be displayed out a graphics monitor and to apply various rotations, translations and scaling transformations interactively, through the keyboard. The skeletal model is generated by connecting any pair of representative points, one from each of the bases in the basepair. In addition to the above mentioned manipulations, the base residues can be identified by using a locator and the distance between any pair of residues can be obtained. A sequence based color coded display allows easy identification of sequence repeats, such as runs of Adenines. The real time interactive manipulation of such skeletal models for large DNA/RNA double helices, can be used to trace the path of the nucleic acid chain in three dimensions and hence get a better idea of its topology, location of linear or curved regions, distances between far off regions in the sequence etc. A physical picture of these features will assist in understanding the relationship between base sequence, structure and biological function in nucleic acids.
Resumo:
We study the problem of the coalescence of twisted flux tubes by assuming that the azimuthal field lines reconnect at a current sheet during the coalescence process and everywhere else the magnetic field is frozen in the fluid. We derive relations connecting the topology of the coalesced flux tube with the topologies of the initial flux tubes, and then obtain a structure equation for calculating the field configuration of the coalesced flux tube from the given topology. Some solutions for the two extreme cases of low-β plasma and high-β plasma are discussed. The coalesced flux tube has less twist than the initial flux tube. Magnetic helicity is found to be exactly conserved during the coalescence, but the assumptions in the model put a constraint on the energy dissipation so that we do not get a relaxation to the minimum-energy Taylor state in the low-β case. It is pointed out that the structure equation connecting the topology and the equilibrium configuration is quite general and can be of use in many two-dimensional flux tube problems.
Resumo:
Hyperbranched polyethers having poly(ethylene glycol) (PEG) segments at their molecular periphery were prepared by a simple procedure wherein an AB2 type monomer was melt-polycondensed with an A-type monomer, namely, heptaethylene glycol monomethyl ether. The presence of a large number of PEG units at the termini rendered a lower critical solution temperature (LCST) to these copolymers, above which they precipitated out of an aqueous solution. In an effort to understand the effect of various molecular structural parameters on their LCST, the length of the hydrophobic spacer segment within the hyperbranched core and the extent of PEGylation were varied. Additionally, linear analogues that incorporates pendant PEG segments were also prepared and comparison of their LCST with that of the hyperbranched analogue clearly revealed that hyperbranched topology leads to a substantial increase in the LCST, highlighting the importance of the peripheral placement of the PEG units.
Resumo:
The paper presents a novel slicing based method for computation of volume fractions in multi-material solids given as a B-rep whose faces are triangulated and shared by either one or two materials. Such objects occur naturally in geoscience applications and the said computation is necessary for property estimation problems and iterative forward modeling. Each facet in the model is cut by the planes delineating the given grid structure or grid cells. The method, instead of classifying the points or cells with respect to the solid, exploits the convexity of triangles and the simple axis-oriented disposition of the cutting surfaces to construct a novel intermediate space enumeration representation called slice-representation, from which both the cell containment test and the volume-fraction computation are done easily. Cartesian and cylindrical grids with uniform and non-uniform spacings have been dealt with in this paper. After slicing, each triangle contributes polygonal facets, with potential elliptical edges, to the grid cells through which it passes. The volume fractions of different materials in a grid cell that is in interaction with the material interfaces are obtained by accumulating the volume contributions computed from each facet in the grid cell. The method is fast, accurate, robust and memory efficient. Examples illustrating the method and performance are included in the paper.
Resumo:
We study the problem of decentralized sequential change detection with conditionally independent observations. The sensors form a star topology with a central node called fusion center as the hub. The sensors transmit a simple function of their observations in an analog fashion over a wireless Gaussian multiple access channel and operate under either a power constraint or an energy constraint. Simulations demonstrate that the proposed techniques have lower detection delays when compared with existing schemes. Moreover we demonstrate that the energy-constrained formulation enables better use of the total available energy than a power-constrained formulation.
Resumo:
A novel dodecagonal space vector structure for induction motor drive is presented in this paper. It consists of two dodecagons, with the radius of the outer one twice the inner one. Compared to existing dodecagonal space vector structures, to achieve the same PWM output voltage quality, the proposed topology lowers the switching frequency of the inverters and reduces the device ratings to half. At the same time, other benefits obtained from existing dodecagonal space vector structure are retained here. This includes the extension of the linear modulation range and elimination of all 6+/-1 harmonics (n=odd) from the phase voltage. The proposed structure is realized by feeding an open-end winding induction motor with two conventional three level inverters. A detailed calculation of the PWM timings for switching the space vector points is also presented. Simulation and experimental results indicate the possible application of the proposed idea for high power drives.
Resumo:
In this paper, we study approximatively τ-compact and τ-strongly Chebyshev sets, where τ is the norm or the weak topology. We show that the metric projection onto τ-strongly Chebyshev sets are norm-τ continuous. We characterize approximatively τ-compact and τ-strongly Chebyshev hyperplanes and use them to characterize factor reflexive proximinal subspaces in τ-almost locally uniformly rotund spaces. We also prove some stability results on approximatively τ-compact and τ-strongly Chebyshev subspaces.
Resumo:
In this work, we explore simultaneous geometry design and material selection for statically determinate trusses by posing it as a continuous optimization problem. The underlying principles of our approach are structural optimization and Ashby’s procedure for material selection from a database. For simplicity and ease of initial implementation, only static loads are considered in this work with the intent of maximum stiffness, minimum weight/cost, and safety against failure. Safety of tensile and compression members in the truss is treated differently to prevent yield and buckling failures, respectively. Geometry variables such as lengths and orientations of members are taken to be the design variables in an assumed layout. Areas of cross-section of the members are determined to satisfy the failure constraints in each member. Along the lines of Ashby’s material indices, a new design index is derived for trusses. The design index helps in choosing the most suitable material for any geometry of the truss. Using the design index, both the design space and the material database are searched simultaneously using gradient-based optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous, although the material selection from a database is an inherently discrete problem. A few illustrative examples are included. It is observed that the method is capable of determining the optimal topology in addition to optimal geometry when the assumed layout contains more links than are necessary for optimality.
Resumo:
Diagnostic radiology represents the largest man-made contribution to population radiation doses in Europe. To be able to keep the diagnostic benefit versus radiation risk ratio as high as possible, it is important to understand the quantitative relationship between the patient radiation dose and the various factors which affect the dose, such as the scan parameters, scan mode, and patient size. Paediatric patients have a higher probability for late radiation effects, since longer life expectancy is combined with the higher radiation sensitivity of the developing organs. The experience with particular paediatric examinations may be very limited and paediatric acquisition protocols may not be optimised. The purpose of this thesis was to enhance and compare different dosimetric protocols, to promote the establishment of the paediatric diagnostic reference levels (DRLs), and to provide new data on patient doses for optimisation purposes in computed tomography (with new applications for dental imaging) and in paediatric radiography. Large variations in radiation exposure in paediatric skull, sinus, chest, pelvic and abdominal radiography examinations were discovered in patient dose surveys. There were variations between different hospitals and examination rooms, between different sized patients, and between imaging techniques; emphasising the need for harmonisation of the examination protocols. For computed tomography, a correction coefficient, which takes individual patient size into account in patient dosimetry, was created. The presented patient size correction method can be used for both adult and paediatric purposes. Dental cone beam CT scanners provided adequate image quality for dentomaxillofacial examinations while delivering considerably smaller effective doses to patient compared to the multi slice CT. However, large dose differences between cone beam CT scanners were not explained by differences in image quality, which indicated the lack of optimisation. For paediatric radiography, a graphical method was created for setting the diagnostic reference levels in chest examinations, and the DRLs were given as a function of patient projection thickness. Paediatric DRLs were also given for sinus radiography. The detailed information about the patient data, exposure parameters and procedures provided tools for reducing the patient doses in paediatric radiography. The mean tissue doses presented for paediatric radiography enabled future risk assessments to be done. The calculated effective doses can be used for comparing different diagnostic procedures, as well as for comparing the use of similar technologies and procedures in different hospitals and countries.
Resumo:
The activity of molybdenum dioxide (MoO2) in the MoO2–TiO2 solid solutions was measured at 1600 K using a solid-state cell incorporating yttria-doped thoria as the electrolyte. For two compositions, the emf was also measured as a function of temperature. The cell was designed such that the emf is directly related to the activity of MoO2 in the solid solution. The results show monotonic variation of activity with composition, suggesting a complete range of solid solutions between the end members and the occurrence of MoO2 with a tetragonal structure at 1600 K. A large positive deviation from Raoult's law was found. Excess Gibbs energy of mixing is an asymmetric function of composition and can be represented by the subregular solution model of Hardy as follows.The temperature dependence of the emf for two compositions is reasonably consistent with ideal entropy of mixing. A miscibility gap is indicated at a lower temperature with the critical point characterized by Tc (K)=1560 and . Recent studies indicate that MoO2 undergoes a transition from a monoclinic to tetragonal structure at 1533 K with a transition entropy of 9.91 J·(mol·K)−1. The solid solubility of TiO2 with rutile structure in MoO2 with a monoclinic structure is negligible. These features give rise to a eutectoid reaction at 1412 K. The topology of the computed phase diagram differs significantly from that suggested by Pejryd.