777 resultados para Skeleton
Resumo:
A manufacturing technique for the production of aluminum components is described. A resin-bonded part is formed by a rapid prototyping technique and then debound and infiltrated by a second aluminum alloy under a nitrogen atmosphere. During thermal processing, the aluminum reacts with the nitrogen and is partially transformed into a rigid aluminum nitride skeleton, which provides the structural rigidity during infiltration. The simplicity and rapidity of this process in comparison to conventional production routes, combined with the ability to fabricate complicated parts of almost any geometry and with high dimensional precision, provide an additional means to manufacture aluminum components.
Resumo:
Selective laser sintering has been used to fabricate an aluminium alloy powder preform which is subsequently debound and infiltrated with a second aluminium alloy. This represents a new rapid manufacturing system for aluminium that can be used to fabricate large, intricate parts. The base powder is an alloy such as AA6061. The infiltrant is a binary or higher-order eutectic based on either Al-Cu or At-Si. To ensure that infiltration occurs without loss of dimensional precision, it is important that a rigid skeleton forms prior to infiltration. This can be achieved by the partial transformation of the aluminium to aluminium nitride. In order for this to occur throughout the component, magnesium powder must be added to the alumina support powder which surrounds the part in the furnace. The magnesium scavenges the oxygen and thereby creates a microclimate in which aluminium nitride can form. The replacement of the ionocovalent Al2O3 with the covalent AlN on the surface of the aluminium powders also facilitates wetting and thus spontaneous and complete infiltration. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The use of tin as an alloying element in the production of freeformed infiltrated aluminium components is explored. Tin slows the growth of the aluminium nitride skeleton which provides dimensional stability, as well as increasing the rate of infiltration of the aluminium liquid into the aluminium nitride skeleton. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Before puberty, there are only small sex differences in body shape and composition. During adolescence, sexual dimorphism in bone, lean, and fat mass increases, giving rise to the greater size and strength of the male skeleton. The question remains as to whether there are sex differences in bone strength or simply differences in anthropometric dimensions. To test this, we applied hip structural analysis (HSA) to derive strength and geometric indices of the femoral neck using bone densitometry scans (DXA) from a 6-year longitudinal study in Canadian children. Seventy boys and sixty-eight girls were assessed annually for 6 consecutive years. At the femoral neck, cross-sectional area (CSA, an index of axial strength), subperiosteal width (SPW), and section modulus (Z, an index of bending strength) were determined, and data were analyzed using a hierarchical (random effects) modeling approach. Biological age (BA) was defined as years from age at peak height velocity (PHV). When BA, stature, and total-body lean mass (TB lean) were controlled, boys had significantly higher Z than girls at all maturity levels (P < 0.05). Controlling height and TB lean for CSA demonstrated a significant independent sex by BA interaction effect (P < 0.05). That is, CSA was greater in boys before PHV but higher in girls after PHV The coefficients contributing the greatest proportion to the prediction of CSA, SPW, and Z were height and lean mass. Because the significant sex difference in Z was relatively small and close to the error of measurement, we questioned its biological significance. The sex difference in bending strength was therefore explained by anthropometric differences. In contrast to recent hypotheses, we conclude that the CSA-lean ratio does not imply altered mechanosensitivity in girls because bending dominates loading at the neck, and the Z-lean ratio remained similar between the sexes throughout adolescence. That is, despite the greater CSA in girls, the bone is strategically placed to resist bending; hence, the bones of girls and boys adapt to mechanical challenges in a similar way. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The biosynthetic origins of the isocyanide and isothiocyanate functional groups in the marine sponge metabolites diisocyanoadociane (1), 9-isocyanopupukeanane (10) and 9- isothiocyanatopupukeanane (11) are probed by the use of [C-14]-labelled precursor experiments. Incubation of the sponge Amphimedon terpenensis with [C-14]-labelled thiocyanate resulted in radioactive diisocyanoadociane ( 1) in which the radiolabel is specifically associated with the isocyanide carbons. As expected, cyanide and thiocyanate were confirmed as precursors to the pupukeananes 10 and 11 in the sponge Axinyssa n. sp.; additionally these precursors labelled 2-thiocyanatoneopupukeanane ( 12) in this sponge. To probe whether isocyanide-isothiocyanate interconversions take place at the secondary metabolite level, the advanced precursor bisisothiocyanate 17 was supplied to A. terpenensis, but did not result in significant labelling in the natural product isocyanide 1. In contrast, in the sponge Axinyssa n. sp., feeding of [C-14]-9-isocyanopupukeanane (10) resulted in isolation of radiolabelled 9- isothiocyanatopupukeanane 11, while the feeding of [C-14]-11 resulted in labelled isocyanide 10. These results show conclusively that isocyanides and isothiocyanates are interconverted in the sponge Axinyssa n. sp., and confirm the central role that thiocyanate occupies in the terpene metabolism of this sponge.
Resumo:
Hitherto, adsorption has been traditionally used to study only the porous structure in disordered materials, while the structure of the solid phase skeleton has been probed by crystallographic methods such as X-ray diffraction. Here we show that for carbons density functional theory, suitably adapted to consider heterogeneity of the pore walls, can be reliably used to probe features of the solid structure hitherto accessibly only approximately even by crystallographic methods. We investigate a range of carbons and determine pore wall thickness distributions using argon adsorption, with results corroborated by X-ray diffraction.
Resumo:
The photoacclimation of endolithic algae ( of the genus Ostreobium) inhabiting the skeleton of the Mediterranean coral Oculina patagonica during a bleaching event was examined. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques in situ were used to assess the photosynthetic efficiency of endolithic algae in the coral skeleton and the symbiotic dinoflagellates (zooxanthellae) in the coral tissue. Relative photosynthetic electron transport rates (ETRs) of the endolithic algae under bleached areas of the colony were significantly higher than those of endolithic algae from a healthy section of the colony and those of zooxanthellae isolated from the same section. Endolithic algae under healthy parts of the colony demonstrated an ETRmax of 16.5% that of zooxanthellae from tissue in the same section whereas endolithic algae under bleached sections showed ETRmax values that were 39% of those found for healthy zooxanthellae. The study demonstrates that endolithic algae undergo photoacclimation with increased irradiance reaching the skeleton. As PAM fluorometry has become a major tool for assessing levels of stress and bleaching in corals, the importance of considering the contribution of the endolithic algae to the overall chlorophyll fluorescence measured is highlighted.
Resumo:
Lepidotrichia are dermal elements located at the distal margin of osteichthyan fins. In sarcopterygians and actinopterygians, the term has been used to denote the most distal bony hemisegments and also the more proximal, scale-covered segments which overlie endochondral bones of the fin. In certain sarcopterygian fishes, including the Rhizodontida, these more proximal, basal segments are very long, extending at least half the length of the fin. The basal segments have a subcircular cross section, rather than the crescentic cross section of the distal lepidotrichial hemisegments, which lack a scale cover and comprise short, generally regular, elements. In rhizodonts and other sarcopterygians, e.g. Eusthenopteron, the basal elements are the first to appear during fin development, followed by the endochondral bones and then the distal lepidotrichia. This sequence contradicts the 'clock-face model' of fin development proposed by Thorogood in which the formation of endochondral bones is followed by development of lepidotrichia. However, if elongate basal 'lepidotrichia' are not homologous with more distal, jointed lepidotrichia and if the latter form within a distal fin-fold and the former outside this fold, then Thorogood's 'clock-face' model remains valid. This interpretation might indicate that the fin-fold has been lost in early digited stem-tetrapods such as Acanthostega and Ichthyostega and elongate basal elements, but not true lepidotrichia, occur in the caudal fins of these taxa.
Resumo:
This study explores whether the introduction of selectively trained radiographers reporting Accident and Emergency (A&E) X-ray examinations or the appendicular skeleton affected the availability of reports for A&E and General Practitioner (GP) examinations at it typical district general hospital. This was achieved by analysing monthly data on A&E and GP examinations for 1993 1997 using structural time-series models. Parameters to capture stochastic seasonal effects and stochastic time trends were included ill the models. The main outcome measures were changes in the number, proportion and timeliness of A&E and GP examinations reported. Radiographer reporting X-ray examinations requested by A&E was associated with it 12% (p = 0.050) increase in the number of A&E examinations reported and it 37% (p
Resumo:
Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.
Resumo:
A new bioeroding sponge belonging to the genus Cliona is described from the Australian Great Barrier Reef, Cliona minuscula, sp. nov. As the sponge lacked microscleres, comparison with existing clionaid species was difficult. We considered 15 other species of Cliona with only tylostyles: C. alderi, C. arenosa. C. caesia nov. comb., C. californiana, C. celata, C. delitrix, C. dissimilis, C. ecaudis, C. insidiosa, C. janitrix, C. kempi, C. laticavicola, C. macgeachii, C. millepunctata and C. peponaca. Characters of all species are presented in table-form to facilitate comparison during future studies. We listed additional species of Cliona that were not directly compared to the new species, because they were either invalid, insufficiently described, or they may not be obligate bioeroders. The form and dimensions of the megascleres of C. minuscula, sp. nov. indicated that it is distinct from all considered species. Its mean tylostyle dimensions were 225.3 mu m length, 4.5 mu m shaft width and 6.8 mu m tyle width, which is comparatively small. Because other morphological features were small as well ( erosion chambers, papillar diameter), this species was named C. minuscula. The species record for sponges of the genus Cliona reported from Australia is now 11.
Resumo:
It is well established that prostaglandins are essential mediators of bone resorption and formation. In the early 1990s, it was discovered that enzymatic reactions producing prostaglandins were regulated by two cyclooxygenase enzymes, one producing prostaglandins constitutively in tissues like the stomach, prostaglandin endoperoxide H synthase-1 (PGHS-1 or COX-1), and another induced by mitogens or inflammatory mediators (PGHS-2 or COX-2). This neat distinction has not been maintained because both enzymes act in different cell systems to provide physiological signaling, constitutively or by induction under certain conditions. For example, the regulation patterns of PGHS-1 and PGHS-2 are distinct, but the evidence shows that PGHS-2 functions constitutively in the skeleton. PGHS-2 hits quickly been established, therefore, as a key regulator of bone biology, capable of rapid and transient expression in bone cells, and mediating osteoclastogenesis, mechanotransduction, bone formation and fracture repair. The goal of this review is to Summarize the current state of our knowledge of PGHS regulation of bone metabolism and to identify some of the key unresolved challenges and questions that require further study. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Experiments to design physical activity programs that optimize their osteogenic potential are difficult to accomplish in humans. The aim of this article is to review the contributions that animal studies have made to knowledge of the loading conditions that are osteogenic to the skeleton during growth, as well as to consider to what extent animal studies fail to provide valid models of physical activity and skeletal maturation. Controlled loading studies demonstrate that static loads are ineffective, and that bone formation is threshold driven and dependent on strain rate, amplitude, and duration of loading. Only a few loading cycles per session are required, and distributed bouts are more osteogenic than sessions of long duration. Finally, animal models fail to inform us of the most appropriate ways to account for the variations in biological maturation that occur in our studies of children and adolescents, requiring the use of techniques for studying human growth and development.
Resumo:
Following rapid lesion progression of white syndrome in tabular Acropora spp., the white bare skeleton gradually changes to green, a result of endolithic algae blooms (primarily Ostreobium spp.). Endolithic algal biomass and chlorophyll concentration were found to be an order of magnitude higher in the green zone compared with healthy appearing parts of each colony. Chl b to Chl a ratio increased from 1:1.6 in the healthy area to 1:2 and 1:3.5 in the white exposed skeleton and green zones, respectively. These observations together with pulse amplitude modulated (PAM) fluorometry suggest photoacclimation of the endoliths in the green zone. Histopathological microscopy revealed that the endolithic algal filaments penetrate the coral tissue. This study highlights the interaction of endolithic algae with both the skeleton and host tissue. This may have a critical role in the processes that accompany the post-disease state in reef-building corals.