886 resultados para Size frequency distribution


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The grain-size distribution of 223 unconsolidated sediment samples from four DSDP sites at the mouth of the Gulf of California was determined using sieve and pipette techniques. Shepard's (1954) and Inman's (1952) classification schemes were used for all samples. Most of the sediments are hemipelagic with minor turbidites of terrigenous origin. Sediment texture ranges from silty sand to silty clay. On the basis of grain-size parameters, the sediments can be divided into the following groups: (1) poorly to very poorly sorted coarse and medium sand; and (2) poorly to very poorly sorted fine to very fine sand and clay.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present late Quaternary records of aragonite preservation determined for sediment cores recovered on the Brazilian Continental Slope (1790-2585 m water depth) where North Atlantic Deep Water (NADW) dominates at present. We have used various indirect dissolution proxies (carbonate content, aragonite/calcite contents, and sand percentages) as well as gastropodal abundances and fragmentation of Limacina inflata to determine the state of aragonite preservation. In addition, microscopic investigations of the dissolution susceptibility of three Limacina species yielded the Limacina Dissolution Index which correlates well with most of the other proxies. Excellent preservation of aragonite was found in the Holocene section, whereas aragonite dissolution gradually increases downcore. This general pattern is attributed to an overall increase in aragonite corrosiveness of pore waters. Overprinted on this early diagenetic trend are high-frequency fluctuations of aragonite preservation, which may be related to climatically induced variations of intermediate water masses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Near-surface sediments from the equatorial east Atlantic and the Norwegian Sea exhibit pronounced shear strength maxima in profiles from the peak Holocene and Pleistocene. These semi-indurated layers start to occur at 8-102 cm below the sediment surface and can be explained neither by the modal composition nor by the effective overburden pressure of the sediments. However, scanning electron microscope and microprobe data exhibit micritic crusts and crystal carpets, which are clearly restricted to (undisturbed) samples from indurated layers and form a manifest explanation for their origin. The minerals precipitated comprise calcite, aragonite, and in samples more proximal to the African continent SiO2 needles, and needles of as yet unidentified K-Mg-Fe-Al silicates, crusts of which dominate the indurated layers in the Norwegian Sea. By their stratigraphic position in deep-sea sediments the carbonate-based shear strength maxima are tentatively ascribed to dissolved adjacent pteropod layers from the early Holocene and hence to short-lived no-analogue events of early diagenesis. Possibly, they have been controlled by a reduced organic carbon flux, leading to increased aragonite preservation in the deep sea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fine-grained sediment depocenters on continental shelves are of increased scientific interest since they record environmental changes sensitively. A north-south elongated mud depocenter extends along the Senegalese coast in mid-shelf position. Shallow-acoustic profiling was carried out to determine extent, geometry and internal structures of this sedimentary body. In addition, four sediment cores were retrieved with the main aim to identify how paleoclimatic signals and coastal changes have controlled the formation of this mud depocenter. A general paleoclimatic pattern in terms of fluvial input appears to be recorded in this depositional archive. Intervals characterized by high terrigenous input, high sedimentation rates and fine grain sizes occur roughly contemporaneously in all cores and are interpreted as corresponding to intensified river discharge related to more humid conditions in the hinterland. From 2750 to 1900 and from 1000 to 700 cal a BP, wetter conditions are recorded off Senegal, an observation which is in accordance with other records from NW-Africa. Nevertheless, the three employed proxies (sedimentation rate, grain size and elemental distribution) do not always display consistent inter-core patterns. Major differences between the individual core records are attributed to sediment remobilization which was linked to local hydrographic variations as well as reorganizations of the coastal system. The Senegal mud belt is a layered inhomogeneous sedimentary body deposited on an irregular erosive surface. Early Holocene deceleration in the rate of the sea-level rise could have enabled initial mud deposition on the shelf. These favorable conditions for mud deposition occur coevally with a humid period over NW-Africa, thus, high river discharge. Sedimentation started preferentially in the northern areas of the mud belt. During mid-Holocene, a marine incursion led to the formation of an embayment. Afterwards, sedimentation in the north was interrupted in association with a remarkable southward shift in the location of the active depocenter as it is reflected by the sedimentary architecture and confirmed by radiocarbon dates. These sub-recent shifts in depocenters location are caused by migrations of the Senegal River mouth. During late Holocene times, the weakening of river discharge allowed the longshore currents to build up a chain of beach barriers which have forced the river mouth to shift southwards.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Textural and compositional differences were found between gravity-flow sheets in an open-ocean environment on the northern slope of Little Bahama Bank (Site 628, Pliocene turbidite sequence) and in a closed-basin depositional setting (Site 632, Quaternary turbidite sequence). Mud-supported debris-flow sheets were cored at Site 628. Average mean grain size of the turbidite samples was lower, mud content was higher, and sorting was poorer than in comparable samples from Site 632. This reflects the deposition of proximal, low-energy turbidity currents and debris flows on a base-ofslope carbonate apron. No mud-supported debris-flow sheets were deposited in the investigated sediment sequence of Hole 632A. Many larger turbidity currents from around the margins of Exuma Sound may have reached this central basin setting, depositing sediments that had been transported over longer distances. Planktonic components dominate in the grain-sized fraction (500-1000 µm) of turbidite samples from Hole 628A, while platform detritus is rare. We interpreted this as resulting from the erosion and reworking of a large area of open-ocean slope sediments by gravity flows. In contrast, large amounts of benthic and platform components were found in the turbidite samples of Hole 632A. This may be explained by the fact that the slopes of the enclosed Exuma Sound are steep, and turbidity currents bypassed much of these slopes through pronounced channels, delivering more shallow-water detritus to the deep basin. Erosion of slope sediments, a possible source area of planktonic detritus, is assumed to be low. The small slope area in relation to the larger surrounding platform areas and lower production of planktonic components in the enclosed waters of Exuma Sound may also explain the observed low number of planktonic components at Hole 632A. Turbidite material from both open-ocean and enclosed-basin environments was deposited at Site 635.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gravelly clay loamy and clayey soils developed from the derivatives of ultramafic rocks of the dunite-harzburgite complex of the Rai-Iz massif in the Polar Urals have been studied. They are represented by raw-humus pelozems (weakly developed clayey soils) under conditions of perfect drainage on steep slopes and by the gleyzems (Gleysols) with vivid gley color patterns in the eluvial positions on leveled elements of the relief. The magnesium released from the silicates with the high content of this element (mainly from olivine) specifies the neutral-alkaline reaction in these soils. Cryoturbation, the accumulation of raw humus, the impregnation of the soil mass with humic substances, gleyzation, and the ferrugination of the gleyed horizons are also clearly pronounced in the studied soils. Despite the high pH values, the destruction of supergene smectites in the upper horizons and ferrugination (the accumulation of iron hydroxides) in the microfissures dissecting the grains of olivine, pyroxene, and serpentine, and in decomposing plant tissues take place. The development of these processes may be related to the local acidification (neutralization) of the soil medium under the impact of biota and carbonic acids. The specificity of gleyzation in the soils developing from ultra-mafic rocks is shown in the absence of iron depletion from the fine earth material against the background of the greenish blue gley color pattern.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fabric of sediments recovered at sites drilled on the Indus Fan, Owen Ridge, and Oman margin during Ocean Drilling Program Leg 117 was examined by scanning electron microscopy to document changes that accompany sediment burial. Two sediment types were studied: (1) biogenic sediments consisting of a variety of marly nannofossil and nannofossil oozes and chalks and (2) terrigenous sediments consisting of fine-grained turbidites deposited in association with the Indus Fan. Biogenic sediments were examined with samples from the seafloor to depths of 306 m below seafloor (mbsf) on the Owen Ridge (Site 722) and 368 mbsf on the Oman margin (Sites 723 and 728). Over these depth ranges the biogenic sediments are characterized by a random arrangement of microfossils and display little chemical diagenetic alteration. The microfossils are dispersed within a fine-grained matrix that is predominantly microcrystalline carbonate particles on the Owen Ridge and clay and organic matter on the Oman margin. Sediments with abundant siliceous microfossils display distinct, open fabrics with high porosity. Porosity reduction resulting from gravitational compaction appears to be the primary process affecting fabric change in the biogenic sediment sections. Fabric of illite-rich clayey silts and silty claystones from the Indus Fan (Site 720) and Owen Ridge (Sites 722 and 731) was examined for a composite section extending from 45 to 985 mbsf. In this section fabric of the fine-grained turbidites changes from one with small flocculated clay domains, random particle arrangement, and high porosity to a fabric with larger domains, strong preferred particle orientation roughly parallel to bedding, and lower porosity. These changes are accomplished by a growth in domain size, primarily through increasing face-to-face contacts, and by particle reorientation which is characterized by a sharp increase in alignment with bedding between 200 and 400 mbsf. Despite extensive particle reorientation, flocculated clay fabric persists in the deepest samples examined, particularly adjacent to silt grains, and the sediments lack fissility. Fabric changes over the 45-985 mbsf interval occur in response to gravitational compaction. Porosity reduction and development of preferred particle orientation in the Indus Fan and Owen Ridge sections occur at greater depths than outlined in previous fabric models for terrigenous sediments as a consequence of a greater abundance of silt and a greater abundance of illite and chlorite clays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lysocline reconstructions play an important role in scenarios purporting to explain the lowered atmospheric CO2 content of glacial time. These reconstructions are based on indicators such as the CaCO3 content, the percent of coarse fraction, the ratio of fragments to whole foraminifera shells, the ratio of solution-susceptible to solution-resistant species, and the ratio of coarse to fine CaCO3. All assume that changes with time in the composition of the input material do not bias the result. However, as the composition of the input material does depend on climate, none of these indicators provides an absolute measure of the extent of dissolution. In this paper we evaluate the reliability of the ratio of >63 µm CaCO3 to total CaCO3 as a dissolution indicator. We present here results that suggest that in today's tropics this ratio appears to be determined solely by CO3= ion concentration and water depth (i.e., the saturation state of bottom waters). This finding offers the possibility that the size fraction index can be used to reconstruct CO3= ion concentrations for the late Quaternary ocean to an accuracy of ±5 µmol/kg.