932 resultados para Simulation and Modeling
Resumo:
A new approach is developed to analyze the thermodynamic properties of a sub-critical fluid adsorbed in a slit pore of activated carbon. The approach is based on a representation that an adsorbed fluid forms an ordered structure close to a smoothed solid surface. This ordered structure is modelled as a collection of parallel molecular layers. Such a structure allows us to express the Helmholtz free energy of a molecular layer as the sum of the intrinsic Helmholtz free energy specific to that layer and the potential energy of interaction of that layer with all other layers and the solid surface. The intrinsic Helmholtz free energy of a molecular layer is a function (at given temperature) of its two-dimensional density and it can be readily obtained from bulk-phase properties, while the interlayer potential energy interaction is determined by using the 10-4 Lennard-Jones potential. The positions of all layers close to the graphite surface or in a slit pore are considered to correspond to the minimum of the potential energy of the system. This model has led to accurate predictions of nitrogen and argon adsorption on carbon black at their normal boiling points. In the case of adsorption in slit pores, local isotherms are determined from the minimization of the grand potential. The model provides a reasonable description of the 0-1 monolayer transition, phase transition and packing effect. The adsorption of nitrogen at 77.35 K and argon at 87.29 K on activated carbons is analyzed to illustrate the potential of this theory, and the derived pore-size distribution is compared favourably with that obtained by the Density Functional Theory (DFT). The model is less time-consuming than methods such as the DFT and Monte-Carlo simulation, and most importantly it can be readily extended to the adsorption of mixtures and capillary condensation phenomena.
Resumo:
The paper presents theoretical and experimental investigations into performances of narrowband uniformly and nonuniformly spaced adaptive linear dipole array antennas that are subjected to pointing errors. The analysis focuses on the array's output Signal to Interference plus Noise Ratio. The presence of mutual coupling between the array elements is taken into account. It is shown that the array's tolerance to pointing errors can be enhanced by controlling the interelement spacing. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The article adopts a developmental approach to successful human aging by exploring the concept of generativity in relation to a study of older Australians' lived experiences of involvement in the family and community. Qualitative data, collected through focus group interviews, were analyzed interpretively using recent developments in Erikson's theory of generativity as a framework. As a result, the present study contributes an in-depth understanding of the role of generative acts to the lives of older people. The data provide illustrative support for Erikson's contention of a generativity/stagnation crisis in later life. Involvement in the family and community is seen as a productive and generative activity, which promotes a positive experience of aging. Two further emergent themes are also explored. First, the experiences of study participants illustrate the reciprocal and cyclical nature of grand-generativity, and the importance of intergenerational relationships. Finally, the data contribute to our knowledge of cultural generativity, and in particular the passing on of cultural knowledge through narratives and modeling.
Resumo:
This paper presents the implementation of a modified particle filter for vision-based simultaneous localization and mapping of an autonomous robot in a structured indoor environment. Through this method, artificial landmarks such as multi-coloured cylinders can be tracked with a camera mounted on the robot, and the position of the robot can be estimated at the same time. Experimental results in simulation and in real environments show that this approach has advantages over the extended Kalman filter with ambiguous data association and various levels of odometric noise.
Resumo:
We describe a network module detection approach which combines a rapid and robust clustering algorithm with an objective measure of the coherence of the modules identified. The approach is applied to the network of genetic regulatory interactions surrounding the tumor suppressor gene p53. This algorithm identifies ten clusters in the p53 network, which are visually coherent and biologically plausible.
Resumo:
The Operator Choice Model (OCM) was developed to model the behaviour of operators attending to complex tasks involving interdependent concurrent activities, such as in Air Traffic Control (ATC). The purpose of the OCM is to provide a flexible framework for modelling and simulation that can be used for quantitative analyses in human reliability assessment, comparison between human computer interaction (HCI) designs, and analysis of operator workload. The OCM virtual operator is essentially a cycle of four processes: Scan Classify Decide Action Perform Action. Once a cycle is complete, the operator will return to the Scan process. It is also possible to truncate a cycle and return to Scan after each of the processes. These processes are described using Continuous Time Probabilistic Automata (CTPA). The details of the probability and timing models are specific to the domain of application, and need to be specified using domain experts. We are building an application of the OCM for use in ATC. In order to develop a realistic model we are calibrating the probability and timing models that comprise each process using experimental data from a series of experiments conducted with student subjects. These experiments have identified the factors that influence perception and decision making in simplified conflict detection and resolution tasks. This paper presents an application of the OCM approach to a simple ATC conflict detection experiment. The aim is to calibrate the OCM so that its behaviour resembles that of the experimental subjects when it is challenged with the same task. Its behaviour should also interpolate when challenged with scenarios similar to those used to calibrate it. The approach illustrated here uses logistic regression to model the classifications made by the subjects. This model is fitted to the calibration data, and provides an extrapolation to classifications in scenarios outside of the calibration data. A simple strategy is used to calibrate the timing component of the model, and the results for reaction times are compared between the OCM and the student subjects. While this approach to timing does not capture the full complexity of the reaction time distribution seen in the data from the student subjects, the mean and the tail of the distributions are similar.
Resumo:
As process management projects have increased in size due to globalised and company-wide initiatives, a corresponding growth in the size of process modeling projects can be observed. Despite advances in languages, tools and methodologies, several aspects of these projects have been largely ignored by the academic community. This paper makes a first contribution to a potential research agenda in this field by defining the characteristics of large-scale process modeling projects and proposing a framework of related issues. These issues are derived from a semi -structured interview and six focus groups conducted in Australia, Germany and the USA with enterprise and modeling software vendors and customers. The focus groups confirm the existence of unresolved problems in business process modeling projects. The outcomes provide a research agenda which directs researchers into further studies in global process management, process model decomposition and the overall governance of process modeling projects. It is expected that this research agenda will provide guidance to researchers and practitioners by focusing on areas of high theoretical and practical relevance.
Resumo:
The XSophe computer simulation software suite consisting of a daemon, the XSophe interface and the computational program Sophe is a state of the art package for the simulation of electron paramagnetic resonance spectra. The Sophe program performs the computer simulation and includes a number of new technologies including; the SOPHE partition and interpolation schemes, a field segmentation algorithm, homotopy, parallelisation and spectral optimisation. The SOPHE partition and interpolation scheme along with a field segmentation algorithm greatly increases the speed of simulations for most systems. Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence tracing transitions in the presence of energy level anticrossings and looping transitions and allowing computer simulations in frequency space. Recent enhancements to Sophe include the generalised treatment of distributions of orientational parameters, termed the mosaic misorientation linewidth model and a faster more efficient algorithm for the calculation of resonant field positions and transition probabilities. For complex systems the parallelisation enables the simulation of these systems on a parallel computer and the optimisation algorithms in the suite provide the experimentalist with the possibility of finding the spin Hamiltonian parameters in a systematic manner rather than a trial-and-error process. The XSophe software suite has been used to simulate multifrequency EPR spectra (200 MHz to 6 00 GHz) from isolated spin systems (S > ~½) and coupled centres (Si, Sj _> I/2). Griffin, M.; Muys, A.; Noble, C.; Wang, D.; Eldershaw, C.; Gates, K.E.; Burrage, K.; Hanson, G.R."XSophe, a Computer Simulation Software Suite for the Analysis of Electron Paramagnetic Resonance Spectra", 1999, Mol. Phys. Rep., 26, 60-84.
Resumo:
As advances in molecular biology continue to reveal additional layers of complexity in gene regulation, computational models need to incorporate additional features to explore the implications of new theories and hypotheses. It has recently been suggested that eukaryotic organisms owe their phenotypic complexity and diversity to the exploitation of small RNAs as signalling molecules. Previous models of genetic systems are, for several reasons, inadequate to investigate this theory. In this study, we present an artificial genome model of genetic regulatory networks based upon previous work by Torsten Reil, and demonstrate how this model generates networks with biologically plausible structural and dynamic properties. We also extend the model to explore the implications of incorporating regulation by small RNA molecules in a gene network. We demonstrate how, using these signals, highly connected networks can display dynamics that are more stable than expected given their level of connectivity.
Resumo:
This paper argues the use of reusable simulation templates as a tool that can help to predict the effect of e-business introduction on business processes. First, a set of requirements for e-business modelling is introduced and modelling options described. Traditional business process mapping techniques are examined as a way of identifying potential changes. Whilst paper-based process mapping may not highlight significant differences between traditional and e-business processes, simulation does allow the real effects of e-business to be identified. Simulation has the advantage of capturing the dynamic characteristics of the process, thus reflecting more accurately the changes in behaviour. This paper shows the value of using generic process maps as a starting point for collecting the data that is needed to build the simulation and proposes the use of reusable templates/components for the speedier building of e-business simulation models.
Resumo:
The objective of this work was to design, construct, test and operate a novel circulating fluid bed fast pyrolysis reactor system for production of liquids from biomass. The novelty lies in incorporating an integral char combustor to provide autothermal operation. A reactor design methodology was devised which correlated input parameters to process variables, namely temperature, heat transfer and gas/vapour residence time, for both the char combustor and biomass pyrolyser. From this methodology a CFB reactor was designed with integral char combustion for 10 kg/h biomass throughput. A full-scale cold model of the CFB unit was constructed and tested to derive suitable hydrodynamic relationships and performance constraints. Early difficulties encountered with poor solids circulation and inefficient product recovery were overcome by a series of modifications. A total of 11 runs in a pyrolysis mode were carried out with a maximum total liquids yield of 61.50% wt on a maf biomass basis, obtained at 500°C and with 0.46 s gas/vapour residence time. This could be improved by improved vapour recovery by direct quenching up to an anticipated 75 % wt on a moisture-and-ash-free biomass basis. The reactor provides a very high specific throughput of 1.12 - 1.48 kg/hm2 and the lowest gas-to-feed ratio of 1.3 - 1.9 kg gas/kg feed compared to other fast pyrolysis processes based on pneumatic reactors and has a good scale-up potential. These features should provide significant capital cost reduction. Results to date suggest that the process is limited by the extent of char combustion. Future work will address resizing of the char combustor to increase overall system capacity, improvement in solid separation and substantially better liquid recovery. Extended testing will provide better evaluation of steady state operation and provide data for process simulation and reactor modeling.
Resumo:
Mental simulations and analogies have been identified as powerful learning tools for RNPs. Furthermore, visuals in advertising have recently been conceptualized as meaningful sources of information as opposed to peripheral cues and thus may help consumers learn about RNPs. The study of visual attention may also contribute to understanding the links between conceptual and perceptual analyses when learning for a RNP. Two conceptual models are developed. the first model consists of causal relationships between the attributes of advertising stimuli for RNPs and consumer responses, as well as mediating influences. The second model focuses on the role of visual attention in product comprehension as a response to advertising stimuli. Two experiments are conducted: a Web-Experiment and an eye-tracking experiment. The first experiment (858 subjects) examines the effect of learning strategies (mental simulation vs. analogy vs. no analogy/no mental simulation) and presentation formats (words vs. pictures) on individual responses. The mediating role of emotions is assessed. The second experiment investigates the effect of learning strategies and presentation formats on product comprehension, along with the role of attention (17 subjects). The findings from experiment 1 indicate that learning strategies and presentation formats can either enhance or undermine the effect of advertising stimuli on individual responses. Moreover, the nature of the product (i.e. hedonic vs. utilitarian vs. hybrid) should be considered when designing communications for RNPs. The mediating role of emotions is verified. Experiment 2 suggests that an increase in attention to the message may either reflect enhanced comprehension or confusion.