951 resultados para Simulation Modeling
Resumo:
The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.
Resumo:
We assess the performance of three unconditionally stable finite-difference time-domain (FDTD) methods for the modeling of doubly dispersive metamaterials: 1) locally one-dimensional FDTD; 2) locally one-dimensional FDTD with Strang splitting; and (3) alternating direction implicit FDTD. We use both double-negative media and zero-index media as benchmarks.
Resumo:
The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this paper is to propose a multiobjective optimization approach for solving the manufacturing cell formation problem, explicitly considering the performance of this said manufacturing system. Cells are formed so as to simultaneously minimize three conflicting objectives, namely, the level of the work-in-process, the intercell moves and the total machinery investment. A genetic algorithm performs a search in the design space, in order to approximate to the Pareto optimal set. The values of the objectives for each candidate solution in a population are assigned by running a discrete-event simulation, in which the model is automatically generated according to the number of machines and their distribution among cells implied by a particular solution. The potential of this approach is evaluated via its application to an illustrative example, and a case from the relevant literature. The obtained results are analyzed and reviewed. Therefore, it is concluded that this approach is capable of generating a set of alternative manufacturing cell configurations considering the optimization of multiple performance measures, greatly improving the decision making process involved in planning and designing cellular systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Literature presents a huge number of different simulations of gas-solid flows in risers applying two-fluid modeling. In spite of that, the related quantitative accuracy issue remains mostly untouched. This state of affairs seems to be mainly a consequence of modeling shortcomings, notably regarding the lack of realistic closures. In this article predictions from a two-fluid model are compared to other published two-fluid model predictions applying the same Closures, and to experimental data. A particular matter of concern is whether the predictions are generated or not inside the statistical steady state regime that characterizes the riser flows. The present simulation was performed inside the statistical steady state regime. Time-averaged results are presented for different time-averaging intervals of 5, 10, 15 and 20 s inside the statistical steady state regime. The independence of the averaged results regarding the time-averaging interval is addressed and the results averaged over the intervals of 10 and 20 s are compared to both experiment and other two-fluid predictions. It is concluded that the two-fluid model used is still very crude, and cannot provide quantitative accurate results, at least for the particular case that was considered. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain approximate solutions to stochastic beam bending on Winkler foundation. The study addresses Euler-Bernoulli beams with uncertainty in the bending stiffness modulus and in the stiffness of the foundation. Uncertainties are represented by parameterized stochastic processes. The random behavior of beam response is modeled using the Askey-Wiener scheme. One contribution of the paper is a sketch of proof of existence and uniqueness of the solution to problems involving fourth order operators applied to random fields. From the approximate Galerkin solution, expected value and variance of beam displacement responses are derived, and compared with corresponding estimates obtained via Monte Carlo simulation. Results show very fast convergence and excellent accuracies in comparison to Monte Carlo simulation. The Askey-Wiener Galerkin scheme presented herein is shown to be a theoretically solid and numerically efficient method for the solution of stochastic problems in engineering.
Resumo:
This paper deals with the numerical assessment of the influence of parameters such as pre-compression level, aspect ratio, vertical and horizontal reinforcement ratios and boundary conditions on the lateral strength of masonry walls under in-plane loading. The numerical study is performed through the software DIANA (R) based on the Finite Element Method. The validation of the numerical model is carried out from a database of available experimental results on masonry walls tested under cyclic lateral loading. Numerical results revealed that boundary conditions play a central role on the lateral behavior of masonry walls under in-plane loading and determine the influence of level of pre-compression as well as the reinforcement ratio on the wall strength. The lateral capacity of walls decreases with the increase of aspect ratio and with the decrease of pre-compression. Vertical steel bars appear to have almost no influence in the shear strength of masonry walls and horizontal reinforcement only increases the lateral strength of masonry walls if the shear response of the walls is determinant for failure, which is directly related to the boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]
Resumo:
Unmanned air vehicles (UAVs) and micro air vehicles (MAVs) constitute unique application platforms for vibration-based energy harvesting. Generating usable electrical energy during their mission has the important practical value of providing an additional energy source to run small electronic components. Electrical energy can be harvested from aeroelastic vibrations of lifting surfaces of UAVs and MAVs as they tend to have relatively flexible wings compared to their larger counterparts. In this work, an electromechanically coupled finite element model is combined with an unsteady aerodynamic model to develop a piezoaeroelastic model for airflow excitation of cantilevered plates representing wing-like structures. The electrical power output and the displacement of the wing tip are investigated for several airflow speeds and two different electrode configurations (continuous and segmented). Cancelation of electrical output occurs for typical coupled bending-torsion aeroelastic modes of a cantilevered generator wing when continuous electrodes are used. Torsional motions of the coupled modes become relatively significant when segmented electrodes are used, improving the broadband performance and altering the flutter speed. Although the focus is placed on the electrical power that can be harvested for a given airflow speed, shunt damping effect of piezoelectric power generation is also investigated for both electrode configurations.
Resumo:
This paper proposes a mixed validation approach based on coloured Petri nets and 3D graphic simulation for the design of supervisory systems in manufacturing cells with multiple robots. The coloured Petri net is used to model the cell behaviour at a high level of abstraction. It models the activities of each cell component and its coordination by a supervisory system. The graphical simulation is used to analyse and validate the cell behaviour in a 3D environment, allowing the detection of collisions and the calculation of process times. The motivation for this work comes from the aeronautic industry. The automation of a fuselage assembly process requires the integration of robots with other cell components such as metrological or vision systems. In this cell, the robot trajectories are defined by the supervisory system and results from the coordination of the cell components. The paper presents the application of the approach for an aircraft assembly cell under integration in Brazil. This case study shows the feasibility of the approach and supports the discussion of its main advantages and limits. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
An investigation of nucleate boiling on a vertical array of horizontal plain tubes is presented in this paper. Experiments were performed with refrigerant RI 23 at reduced pressures varying from 0.022 to 0.64, tube pitch to diameter ratios of 1.32, 1.53 and 2.00, and heat fluxes from 0.5 to 40 kW/m(2). Brass tubes with external diameters of 19.05 mm and average roughness of 0.12 mu m were used in the experiments. The effect of the tube spacing on the local heat transfer coefficient along the tube array was negligible within the present range of experimental conditions. For partial nucleate boiling, characterized by low heat fluxes, and low reduced pressures, the tube positioning shows a remarkable effect on the heat transfer coefficient. Based on these data, a general correlation for the prediction of the nucleate boiling heat transfer coefficient on a vertical array of horizontal tubes under flooded conditions was proposed. According to this correlation, the ratio between the heat transfer coefficients of a given tube and the lowest tube in the array depends only on the tube row number, the reduced pressure and the heat flux. By using the proposed correlation, most of the experimental heat transfer coefficients obtained in the present study were predicted within +/- 15%. The new correlation compares reasonably well with independent data from the literature. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The results concerning on an experimental and a numerical study related to SFRCP are presented. Eighteen pipes with an internal diameter of 600 mm and fibre dosages of 10, 20 and 40 kg/m(3) were manufactured and tested. Some technological aspects were concluded. Likewise, a numerical parameterized model was implemented. With this model, the simulation of the resistant behaviour of SFRCP can be performed. In this sense, the results experimentally obtained were contrasted with those suggested by means MAP reaching very satisfactory correlations. Taking it into account, it could be said that the numerical model is a useful tool for the optimal design of the SFRCP fibre dosages, avoiding the need of the systematic employment of the test as an indirect design method. Consequently, the use of this model would reduce the overall cost of the pipes and would give fibres a boost as a solution for this structural typology.
Resumo:
The purpose is to present a scientific research that led to the modeling of an information system which aimed at the maintenance of traceability data in the Brazilian wine industry, according to the principles of a service-oriented architecture (SOA). Since 2005, traceability data maintenance is an obligation for all producers that intend to export to any European Union country. Also, final customers, including the Brazilian ones, have been asking for information about food products. A solution that collectively contemplated the industry was sought in order to permit that producer consortiums of associations could share the costs and benefits of such a solution. Following an extensive bibliographic review, a series of interviews conducted with Brazilian researchers and wine producers in Bento Goncalves - RS, Brazil, elucidated many aspects associated with the wine production process. Information technology issues related to the theme were also researched. The software was modeled with the Unified Modeling Language (UML) and uses web services for data exchange. A model for the wine production process was also proposed. A functional prototype showed that the adopted model is able to fulfill the demands of wine producers. The good results obtained lead us to consider the use of this model in other domains.
Resumo:
In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm, based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining ""absolute"" and ""relative"" safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 [14], using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the ""Automatic Dependent Surveillance-Broadcasting"" (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The approach presented in this paper consists of an energy-based field-circuit coupling in combination with multi-physics simulation of the acoustic radiation of electrical machines. The proposed method is applied to a special switched reluctance motor with asymmetric pole geometry to improve the start-up torque. The pole shape has been optimized, subject to low torque ripple, in a previous study. The proposed approach here is used to analyze the impact of the optimization on the overall acoustic behavior. The field-circuit coupling is based on a temporary lumped-parameter model of the magnetic part incorporated into a circuit simulation based on the modified nodal analysis. The harmonic force excitation is calculated by means of stress tensor computation, and it is transformed to a mechanical mesh by mapping techniques. The structural dynamic problem is solved in the frequency domain using a finite-element modal analysis and superposition. The radiation characteristic is obtained from boundary element acoustic simulation. Simulation results of both rotor types are compared, and measurements of the drive are presented.