926 resultados para Simple Conjunctival Closure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most research on D-STBC has assumed that cooperative relay nodes are perfectly synchronised. Since such an assumption is difficult to achieve in many practical systems, this paper proposes a simple yet optimum detector for the case of two relay nodes, which proves to be much more robust against timing misalignment than the conventional STBC detector.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several previous studies have attempted to assess the sublimation depth-scales of ice particles from clouds into clear air. Upon examining the sublimation depth-scales in the Met Office Unified Model (MetUM), it was found that the MetUM has evaporation depth-scales 2–3 times larger than radar observations. Similar results can be seen in the European Centre for Medium-Range Weather Forecasts (ECMWF), Regional Atmospheric Climate Model (RACMO) and Météo-France models. In this study, we use radar simulation (converting model variables into radar observations) and one-dimensional explicit microphysics numerical modelling to test and diagnose the cause of the deep sublimation depth-scales in the forecast model. The MetUM data and parametrization scheme are used to predict terminal velocity, which can be compared with the observed Doppler velocity. This can then be used to test the hypothesis as to why the sublimation depth-scale is too large within the MetUM. Turbulence could lead to dry air entrainment and higher evaporation rates; particle density may be wrong, particle capacitance may be too high and lead to incorrect evaporation rates or the humidity within the sublimating layer may be incorrectly represented. We show that the most likely cause of deep sublimation zones is an incorrect representation of model humidity in the layer. This is tested further by using a one-dimensional explicit microphysics model, which tests the sensitivity of ice sublimation to key atmospheric variables and is capable of including sonde and radar measurements to simulate real cases. Results suggest that the MetUM grid resolution at ice cloud altitudes is not sufficient enough to maintain the sharp drop in humidity that is observed in the sublimation zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions between atmospheric oxidants and organic amphiphiles at the air water interface of an aerosol droplet may affect the size and critical supersaturation required for cloud droplet formation. We demonstrate that no reaction occurs between gaseous nitrogen dioxide (1000 ppm in air) and a monolayer of an insoluble amphiphile, oleic acid (cis-9-octadecenoic acid), at the air water interface which removes material from the air water interface. We present evidence that the NO2 isomerises the cis-9-octadecenoic (oleic) acid to trans-9-octadecenoic (elaidic) acid. The study presented here is important for future and previous studies of (1) the reaction between the nitrate radical, NO3, and thin organic films as NO2 is usually present in high concentrations in these experimental systems and (2) the effect of NO2 air pollution on the unsaturated fatty acids and lipids found at the air liquid surface of human lung lining fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three simple climate models (SCMs) are calibrated using simulations from atmosphere ocean general circulation models (AOGCMs). In addition to using two conventional SCMs, results from a third simpler model developed specifically for this study are obtained. An easy to implement and comprehensive iterative procedure is applied that optimises the SCM emulation of global-mean surface temperature and total ocean heat content, and, if available in the SCM, of surface temperature over land, over the ocean and in both hemispheres, and of the global-mean ocean temperature profile. The method gives best-fit estimates as well as uncertainty intervals for the different SCM parameters. For the calibration, AOGCM simulations with two different types of forcing scenarios are used: pulse forcing simulations performed with 2 AOGCMs and gradually changing forcing simulations from 15 AOGCMs obtained within the framework of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The method is found to work well. For all possible combinations of SCMs and AOGCMs the emulation of AOGCM results could be improved. The obtained SCM parameters depend both on the AOGCM data and the type of forcing scenario. SCMs with a poor representation of the atmosphere thermal inertia are better able to emulate AOGCM results from gradually changing forcing than from pulse forcing simulations. Correct simultaneous emulation of both atmospheric temperatures and the ocean temperature profile by the SCMs strongly depends on the representation of the temperature gradient between the atmosphere and the mixed layer. Introducing climate sensitivities that are dependent on the forcing mechanism in the SCMs allows the emulation of AOGCM responses to carbon dioxide and solar insolation forcings equally well. Also, some SCM parameters are found to be very insensitive to the fitting, and the reduction of their uncertainty through the fitting procedure is only marginal, while other parameters change considerably. The very simple SCM is found to reproduce the AOGCM results as well as the other two comparably more sophisticated SCMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonpolarizing edge filters have recently becmoe important to separate those IR gas bands used in atmospheric sensing into their P and R branches, namely, the v2 of C02 at a 15µm wavelength. Whereas Thelen has developed all necessary principles for the entire class of nonpolarizing filters it remains difficult to subsittute ither refractive indices (such as infrared) into a visible-region design or assess the effect on consequent performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is presented for the solution of spectral problems on infinite domains with regular ends, which avoids the need to solve boundary-value problems for many trial values of the spectral parameter. We present numerical results both for eigenvalues and for resonances, comparing with results reported by Aslanyan, Parnovski and Vassiliev.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a fluid cell for the measurement of aqueous solutions of biomolecules adapted particularly for the requirements of THz time-domain spectroscopy. The design is simple, requires small-volume samples, avoids cross-contamination and is inexpensive.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The speed of convergence while training is an important consideration in the use of neural nets. The authors outline a new training algorithm which reduces both the number of iterations and training time required for convergence of multilayer perceptrons, compared to standard back-propagation and conjugate gradient descent algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years researchers in the Department of Cybernetics have been developing simple mobile robots capable of exploring their environment on the basis of the information obtained from a few simple sensors. These robots are used as the test bed for exploring various behaviours of single and multiple organisms: the work is inspired by considerations of natural systems. In this paper we concentrate on that part of the work which involves neural networks and related techniques. These neural networks are used both to process the sensor information and to develop the strategy used to control the robot. Here the robots, their sensors, and the neural networks used and all described. 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate controls upland habitats, soils and their associated ecosystem services; therefore, understanding possible changes in upland climatic conditions can provide a rapid assessment of climatic vulnerability over the next century. We used 3 different climatic indices that were optimised to fit the upland area classified by the EU as a Severely Disadvantaged Area (SDA) 1961–1990. Upland areas within the SDA covered all altitudinal ranges, whereas the maximum altitude of lowland areas outside of the SDA was ca. 300 m. In general, the climatic index based on the ratio between annual accumulated temperature (as a measure of growing season length) and annual precipitation predicted 96% of the SDA mapped area, which was slightly better than those indices based on annual or seasonal water deficit. Overall, all climatic indices showed that upland environments were exposed to some degree of change by 2071–2100 under UKCIP02 climate projections for high and low emissions scenarios. The projected area declined by 13 to 51% across 3 indices for the low emissions scenario and by 24 to 84% for the high emissions scenario. Mean altitude of the upland area increased by +11 to +86 m for the low scenario and +21 to +178 m for the high scenario. Low altitude areas in eastern and southern Great Britain were most vulnerable to change. These projected climatic changes are likely to affect upland habitat composition, long-term soil carbon storage and wider ecosystem service provision, although it is not yet possible to determine the rate at which this might occur.