943 resultados para Sheet-steel
Short-term cytotoxic and inflammatory responses of human monocytes to stainless steel fibre networks
Resumo:
The aim of the current work was to examine the human monocyte response to 444 ferritic stainless steel fibre networks. 316L austenitic fibre networks, of the same fibre volume fraction, were used as control surfaces. Fluorescence and scanning electron microscopies suggest that the cells exhibited a good degree of attachment and penetration throughout both networks. Lactate Dehydrogenase (LDH) and TNF-α releases were used as indicators of cytotoxicity and inflammatory responses respectively. LDH release indicated similar levels of monocyte viability when in contact with the 444 and 316L fibre networks. Both networks elicited a low level secretion of TNF-α, which was significantly lower than that of the positive control wells containing zymosan. Collectively, the results suggest that 444 ferritic and 316L austenitic networks induced similar cytotoxic and inflammatory responses from human monocytes. © 2012 Materials Research Society.
Resumo:
A sandwich panel with a core made from solid pyramidal struts is a promising candidate for multifunctional application such as combined structural and heat-exchange function. This study explores the performance enhancement by making use of hollow struts, and examines the elevation in the plastic buckling strength by either strain hardening or case hardening. Finite element simulations are performed to quantify these enhancements. Also, the sensitivity of competing collapse modes to tube geometry and to the depth of case hardening is determined. A comparison with other lattice materials reveals that the pyramidal lattice made from case hardened steel tubes outperforms lattices made from solid struts of aluminium or titanium and has a comparable strength to a core made from carbon fibre reinforced polymers. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports on the fabrication and characterization of high-resolution strain sensors for steel based on Silicon On Insulator flexural resonators manufactured with chip-level LPCVD vacuum packaging. The sensors present high sensitivity (120 Hz/μ), very high resolution (4 n), low drift, and near-perfect reversibility in bending tests performed in both tensile and compressive strain regimes. © 2013 IEEE.
Resumo:
Approximately 40% of annual demand for steel worldwide is used to replace products that have failed. With this percentage set to rise, extending the lifespan of steel in products presents a significant opportunity to reduce demand and thus decrease carbon dioxide emissions from steel production. This article presents a new, simplified framework with which to analyse product failure. When applied to the products that dominate steel use, this framework reveals that they are often replaced because a component/sub-assembly becomes degraded, inferior, unsuitable or worthless. In light of this, four products, which are representative of high steel content products in general, are analysed at the component level, determining steel mass and cost profiles over the lifespan of each product. The results show that the majority of the steel components are underexploited - still functioning when the product is discarded; in particular, the potential lifespan of the steel-rich structure is typically much greater than its actual lifespan. Twelve case studies, in which product or component life has been increased, are then presented. The resulting evidence is used to tailor life-extension strategies to each reason for product failure and to identify the economic motivations for implementing these strategies. The results suggest that a product template in which the long-lived structure accounts for a relatively high share of costs while short-lived components can be easily replaced (offering profit to the producer and enhanced utility to owners) encourages product life extension. © 2013 The Author.
Resumo:
Multi-impact of projectiles on thin 304 stainless steel plates is investigated to assess the degradation of ballistic performance, and to characterise the inherent mechanisms. Assessment of ballistic degradation is by means of a double-impact of rigid spheres at the same site on a circular clamped plate. The limiting velocity of the second impact, will be altered by the velocity of the antecedent impact. Finite element analyses were used to elucidate experimental results and understand the underlying mechanisms that give rise to the performance degradation. The effect of strength and ductility on the single and multi-impact performance was also considered. The model captured the experimental results with excellent agreement. Moreover, the material parameters used within the model were exclusively obtained from published works with no fitting or calibration required. An attempt is made to quantify the elevation of the ballistic limit of thin plates by the dynamic mechanism of travelling hinges. Key conclusions: The multi-hit performance scales linearly with the single-hit performance; and strength is a significantly greater effector of increased ballistic limit than ductility, even at the expense of toughness. © 2014 Elsevier Ltd.
Resumo:
The low speed impact responses of simply-supported and clamped sandwich beams with corrugated and Y-frame cores have been measured in a drop-weight apparatus at 5 m s-1. The AISI 304 stainless steel sandwich beams comprised two identical face sheets and represented 1:20 scale versions of ship hull designs. No significant rate effects were observed at impact speeds representative of ship collisions: the drop-weight responses were comparable to the ones measured quasi-statically. Moreover, the corrugated and Y-frame core beams had similar performances. Three-dimensional finite element (FE) models simulated the experiments and were in good agreement with the measurements. The simulations demonstrated correctly that the sandwich beams collapsed by core indentation under both quasi-static loading and in the drop-weight experiments. These FE models were then used to investigate the sensitivity of impact response to (i) velocity, over a wider range of velocities than achievable with the drop-weight apparatus, and (ii) the presence of the back face sheet. The dynamic responses of sandwich beams with both front and back face sheets were found to be within 20% of the quasi-static responses for speeds less than approximately 5 m s-1. This suggests that quasi-static considerations are adequate to model the collision of a sandwich ship hull. By contrast, beams without a back face collapsed by Brazier buckling under quasi-static loading conditions, and by core indentation at a loading velocity of 5 m s-1. Thus, dynamic considerations are needed in ship hull designs that do not employ a back face. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
The need to create high-value products for specialist applications, and the search for efficient forming routes that obviate the need for some machining steps, is driving Interest In a novel class of forming processes aiming to create locally thickened features within sheet work- pieces. A number of novel forming processes have been proposed to meet this need, but it is as yet unclear which processes will be most effective in creating local thickening of various geometries, and many process configurations have yet to be tried. This paper aims to provide some basic principles for designing and characterising process behaviour. A simplified generic description of sheet thickening processes is provided, with two tools of variable operating on a sheet workpiece in plane strain, with different tool separations and motions parameterised. A comprehensive numerical study of the behaviour of this class of processes is conducted in Abaqus to predict the main characteristics of the material flow in each configuration. The results are used to classify the different basic behaviours that can be achieved by the sheet-bulk thickening processes and to give guidance on future process development, capability and applicability. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
Production of steel and aluminium creates 10% of global carbon emissions from energy and processes. Demand is likely to double by 2050, but climate scientists are recommending absolute reductions of at least 50% and these are Increasingly entering law. How can reductions of this order happen? Only 10-20% savings can be expected in liquid metal production, so the primary industry is pursuing carbon sequestration as the main solution. However, this Is as yet unproven at scale, and as well as carrying some risk, the capital and operating costs are likely to be high, but are as yet unknown. In parallel with these strategies we can also examine whether we can reduce demand for liquid metal. 'Material efficiency' may allow delivery of existing services with less requirement for metal, for instance through designing products that use less metal, reducing process scrap, diverting scrap for other use, re-using components or delaying end of life. Overall demand reduction could occur if goods were used more intensely, alternative means were used to deliver the same services, or total demand were constrained. The paper analyses all possible options, to define and evaluate scenarios that meet the 2050 target, and discuss the steps required to bring them about. The paper concludes with suggestions for key areas where future research In metal forming can support a future low carbon economy. © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim.