928 resultados para Shade tolerance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a theoretical-graph method of determining the fault tolerance degree of the computer network interconnections and nodes. Experimental results received from simulations of this method over a distributed computing network environment are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show an improved DPSK receiver design which can increase useful dispersion tolerance by up to a factor of two. The increased dispersion tolerance is achieved through optimization of the optical filter at the receiver and the delay of the Mach-Zehnder interferometer. In this paper we fully explain the concept, quantify the gain and provide an explanation for the operation of the receiver. © 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a performance evaluation of a non-conventional approach to implement phase noise tolerant optical systems with multilevel modulation formats. The performance of normalized Viterbi-Viterbi carrier phase estimation (V-V CPE) is investigated in detail for circular m-level quadrature amplitude modulation (C-mQAM) signals. The intrinsic property of C-mQAM constellation points with a uniform phase separation allows a straightforward employment of V-V CPE without the need to adapt constellation. Compared with conventional feed-forward CPE for square QAM signals, the simulated results show an enhanced tolerance of linewidth symbol duration product (ΔvTs) at a low sensitivity penalty by using feed-forward CPE structure with C-mQAM. This scheme can be easily upgraded to higher order modulations without inducing considerable complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass pyrolysis to bio-oil is one of the promising sustainable fuels. In this work, relation between biomass feedstock element characteristic and crude bio-oil production yield and lower heating value was explored. The element characteristics considered in this study include moisture, ash, fix carbon, volatile matter, C, H, N, O, S, cellulose, hemicellulose, and lignin content. A semi-batch fixed bed reactor was used for biomass pyrolysis with heating rate of 30 °C/min from room temperature to 600 °C and the reactor was held at 600 °C for 1 h before cooling down. Constant nitrogen flow (1bar) was provided for anaerobic condition. Sago and Napier glass were used in the study to create different element characteristic of feedstock by altering mixing ratio. Comparison between each element characteristic to crude bio-oil yield and low heating value was conducted. The result suggested potential key element characteristic for pyrolysis and provide a platform to access the feedstock element acceptance range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liana Artabotrys hexapetalus (L.f.) Bhand., which is widely planted in the Tropics and native to African rain forests, produced new reiterations (new leader shoots) normally and after damage induced by Hurricane Andrew (August 24, 1992). In each new orthotropic shoot, there is a gradient in lateral branch structures from basal thorns, to vegetative leafy branches, to distal leafy flowering branches. We noted that reiterations developing in shade had more thorns than similar reiterations developing in full sun. Tents with clear (66% photosynthetically active radiation [PAR]) and shaded plastic film (12%–14% PAR) were placed over nodes when the axillary buds began to expand to produce reiteration shoots. After 2 mo of growth inside the tents and in the open, the types of lateral outgrowths (thorn vs. branch) were recorded. Shoots in spectrally neutral shade (red to far red of full sun) and spectrally altered shade (red to far red of canopy shade) produced significantly more thorns at the lower nodes of the shoots as compared to those in full sun. Shoots in control clear plastic tents were the same as those in full sun. We conclude that the fate of lateral bud development is controlled by irradiance (light level) but not by light quality. Increased thorn production in shade could be advantageous to plants growing in the deep shade of rain forests. Thorns in the self-shaded regions of the plant, and well below the forest canopy, could aid in protection from herbivory and in climbing by acting as hooks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The developmental responses of plants to shade underneath foliage are influenced by reductions in irradiance and shifts in spectral quality (characterized by reductions in the quantum ratio of red to far-red wavelengths, R:FR). Previous research on the influence of shadelight on leaf development has neglected the reductions in R:FR characteristic of foliage shade, and these studies have almost certainly underestimated the extent and array of developmental responses to foliage shade. We have studied the effects of reduced irradiance and R:FR on the leaf development of papaya (Carica papaya L., Caricaceae). Using experimental shadehouses, replicates of plants grown in high light conditions (0.20 of sunlight and R:FR = 0.90) were compared to low light conditions (0.02 of sunlight) with either the spectral quality of sunlight (R:FR = 0.99) or of foliage shade (F:FR = 0.26). Although many characteristics, such as leaf thickness, specific leaf weight, stomatal density, palisade parenchyma cell shape, and the ratio of mesophyll air surface/leaf surface were affected by reductions in irradiance, reduced R:FR contributed to further changes. Some characters, such as reduced chlorophyll a/b ratios, reduced lobing, and greater internode length, were affected primarily by low R:FR. The reduced R:FR of foliage shade, presumably affecting phytochrome equilibrium, strongly influences the morphology and anatomy of papaya leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteens hade-adaptedr ain forest species were comparedw ith twelve sun-adaptedt ropical forest species for correlates to leaf optical properties (described previously in Amer. J. Bot. 73: 1100-1108). The two samples were similar in absorptance of quanta for photosynthesis, but the shade-adaptedt axa: 1) had significantlyl ower specificl eaf weights,i ndicatinga more metabolically efficient production of surface for quantum capture; 2) synthesized less chlorophyll per unit area; and 3) used less chlorophyll for capturing the same quanta for photosynthesis. The anatomical features that best correlate with this increased efficiency are palisade cell shape and chloroplast distribution. Palisade cells with more equal dimensions have more chloroplasts on their abaxial surfaces. This dense layer of chloroplasts maximizes the light capture efficiency limited by sieve effects. The more columnar palisade cells of sun-adapted taxa allow light to pass through the central vacuoles and spaces between cells, making chloroplasts less efficient in energy capture, but allowing light to reach chloroplasts in the spongy mesophyll. Pioneer species may be an exception to these two groups of species. Three pioneer taxa included in this study have columnar palisade cells that are extremely narrow and packed closely together. This layer allows little penetration of light, but exposure of the leaf undersurface may provide illumination of spongy mesophyll chloroplasts in these plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both light quantity and quality affect the development and autoecology of plants under shade conditions, as in the understorey of tropical forests. However, little research has been directed towards the relative contributions of lowered photosynthetic photon flux density (PPFD) versus altered spectral distributions (as indicated by quantum ratios of 660 to 730 nm, or R:FR) of radiation underneath vegetation canopies. A method for constructing shade enclosures to study the contribution of these two variables is described. Three tropical leguminous vine species (Abrus precatorius L., Caesalpinia bondicela Fleming and Mucuna pruriens (L.) DC.) were grown in two shade enclosures with 3-4% of solar PPFD with either the R:FR of sunlight (1.10) or foliage shade (0.33), and compared to plants grown in sunlight. Most species treated with low R:FR differed from those treated with high R:FR in (1) percent allocation to dry leaf weight, (2) internode length, (3) dry stem weight/length, (4) specific leaf weight, (5) leaf size, and (6) chlorophyll a/b ratios. However, these plants did not differ in chlorophyll content per leaf dry weight or area. In most cases the effects of low R:FR and PPFD were additional to those of high R:FR and low PPFD. Growth patterns varied among the three species, but both low PPFD and diminished R:FR were important cues in their developmental responses to light environments. This shadehouse system should be useful in studying the effects of light on the developmental ecology of other tropical forest plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The opticalp ropertieso f the leaves of twelve tropicals un speciesa nd thirteent ropicale xtreme shade species were examinedw ith an integratings pherea ttachedt o a spectroradiometerM. easurements of diffuse reflectance and transmittance allowed calculations of absorptance, 350- 1,100 nm. Althoughs ome shade species absorbedh igherp ercentageso f quantumf lux densities for photosynthesis (400-700 nm, PPFD) than the mean for the sun species, the sun and shade species as groups were not significantly different from each other: 90.2, S.D. 3.6% for shade species and 88.6, S.D. 2.4% for the sun species. The groups of species did not differ in total absorptance of energy 350-1,100 nm. Furthermore, the sun and shade species were identical in theirs hifto f absorptancea t wavelengthsb etween6 50 and 750 nm. The anthocyanicc oloration of the leaf undersurfaceso f two species polymorphicf or this characteristic( Trionela hirsuta and Ischnosciphonp ruinosus)i s correlatedw ith increaseda bsorptancea t the uppere nd of the action spectrum of photosynthesis. Although sun and shade species have similar optical properties, the energy investment (as documented by dry wt per unit area of leaf surface) is much less for the shade species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The permanent pigmentation of the leaves of tropical rain forest herbs with anthocyanin has traditionally been viewed as a mechanism for enhancing transpiration by increased heat absorption. We report measurements to ?+0.1?0C on four Indo-mal- esian forest species polymorphic with respect to color. There were no detectable differences in temperature between cyanic and green leaves. In deeply shaded habitats, any temperature difference would arise from black-body infrared radiation which all leaves absorb and to which anthocyanins are transparent. Reflectance spectra of the lower leaf surfaces of these species re- vealed increased reflectance around 650-750 nm for cyanic leaves compared with green leaves of the same species. In all spe- cies anthocyanin was located in a single layer of cells immediately below the photosynthetic tissue. These observations provide empirical evidence that the cyanic layer can improve photosynthetic energy capture by back-scattering additional light through the photosynthetic tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We briefly review the nature of light and its effects on plants, and then describe an inexpensive experimental system for studying the effects of shade, specifically the contributions of reduced intensity ("quantity") and the altered spectral distribution of foliage shade ("quantity") on the development of seedlings and other plants. This system has been devised to be safe to construct, inexpensive in its use of readily available materials, and appropriate for a range of student grade levels, from ~grade six to university courses in botany. We conclude by suggesting a range of experiments this system will allow. An advantage of this system is that it promotes the study of the responses of a large range of plants, most completely unstudied for these responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ray tracing model has been developed to investigate the possible focusing effects of the convexly curved epidermal cell walls which characterize a number of shade-adapted plants. The model indicates that such focusing occurs, resulting in higher photosynthetic photon flux densities at certain locations within the leaf. It is postulated that there will be a corresponding increase in the rate of photosynthesis. In addition, leaf reflectance measurements indicate that this is generally less for the shade plants compared with sun species and would be advantageous in increasing the efficiency of energy capture. Either effect is important for plants which must survive at extremely low light levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was hypothesized that making a commute elevates blood pressure, causes negative affect, reduces frustration tolerance, and impairs performance on simple and complex cognitive tasks. This hypothesis was tested by varying choice and type of commute in an experiment in which 168 volunteers were randomly assigned to one of six experimental conditions. The behavior of subjects who drove 30 miles or rode on a bus for the same distance were compared with the reactions of students who did not commute. Multivariate analyses of variance indicated that subjects who made the commute showed lower frustration tolerance and deficits on complex cognitive task performance. Commuting also raised pulse and systolic blood pressure. Multivariate analyses of covariance (MANCOVA) were performed in an effort to identify physiological and emotional reactions that may mediate these relations. No mediational relationships were uncovered. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pteris vittata, the first reported arsenic hyperaccumulating plant, is potentially used in phytoremediation of arsenic, as it can accumulate up to 2.3% of arsenic in its fronds. In this study, the mechanisms of arsenic tolerance, uptake and transformation were studied in the plant. Arsenic species were analyzed by HPLC-AFS. Results showed that arsenic was mainly accumulated in leaflets, and inorganic arsenate and arsenite were only species in P. vittata. Arsenite was the predominant species in leaflets, whereas arsenate was the predominant species in roots. Arsenic induced the synthesis of thiol containing compounds in P. vittata. As-induced thiol was purified by a novel method: covalent chromatography following preparative HPLC. The purified thiol was characterized as a phytochelatin with two units (PC2). ^ In P. vittata, enhanced tolerance likely results from unusual intracellular detoxification mechanisms. Although PC-dependent sequestration of arsenic into vacuoles is essential for nonhyperaccumulators, this sequestration is not the major arsenic tolerance mechanisms in this arsenic hyperaccumulator. PC-independent sequestration of arsenic is likely the major arsenic tolerance mechanism. PC-dependent arsenic detoxification is probably a supplement to this major mechanism. ^ Interactions between arsenic and phosphate were studied. Under hydroponic condition, arsenic supply decreased the concentrations of phosphate in roots. In soil, arsenic increased the concentrations of phosphate in roots. Arsenic concentrations in rachises and leaflets were not affected by arsenic supply in either hydroponic or soil system. Phosphate decreased arsenic accumulation in roots, rachises and leaflets in the hydroponic system. ^ The uptake kinetics of arsenate, arsenite, monomethyl arsinic acid (MMA), dimethyl arsonic acid, and phosphate were studied in P. vittata. Phosphate uptake systems in Pteris vittata cannot distinguish phosphate and As(V), resulting in As hyperaccumulation. Arsenic hyperaccumulation in this plant is an inevitable consequence during phosphate acquisition. Arsenate, arsenite and MMA are transported via the phosphate uptake systems. The co-transport of arsenite/phosphate and MMA/phosphate is reported for the first time in plants. These unique phenomena are useful for understanding arsenic hyperaccumulation and the evolution of this capacity in P. vittata. ^