954 resultados para Serum ribonuclease 1
Resumo:
We developed a gel- and label-free proteomics platform for comparative studies of human serum. The method involves the depletion of the six most abundant proteins, protein fractionation by Off-Gel IEF and RP-HPLC, followed by tryptic digestion, LC-MS/MS, protein identification, and relative quantification using probabilistic peptide match score summation (PMSS). We evaluated performance and reproducibility of the complete platform and the individual dimensions, by using chromatograms of the RP-HPLC runs, PMSS based abundance scores and abundance distributions as objective endpoints. We were interested if a relationship exists between the quantity ratio and the PMSS score ratio. The complete analysis was performed four times with two sets of serum samples containing different concentrations of spiked bovine beta-lactoglobulin (0.1 and 0.3%, w/w). The two concentrations resulted in significantly differing PMSS scores when compared to the variability in PMSS scores of all other protein identifications. We identified 196 proteins, of which 116 were identified four times in corresponding fractions whereof 73 qualified for relative quantification. Finally, we characterized the PMSS based protein abundance distributions with respect to the two dimensions of fractionation and discussed some interesting patterns representing discrete isoforms. We conclude that combination of Off-Gel electrophoresis (OGE) and HPLC is a reproducible protein fractionation technique, that PMSS is applicable for relative quantification, that the number of quantifiable proteins is always smaller than the number of identified proteins and that reproducibility of protein identifications should supplement probabilistic acceptance criteria.
Resumo:
Elimination of autoreactive T cells by apoptosis is critical for restricting immune responses to self-antigens. An errant lytic interaction between the CD95 death receptor and its ligand CD95L is presumed to be involved in the pathogenesis of multiple sclerosis (MS). Statins are promising agents for the treatment of MS and were shown to modulate levels of soluble death receptors. Here, we evaluated the in vivo effects by interferon (IFN)-beta and atorvastatin on soluble CD95 (sCD95) and sCD95L in serum of patients with MS. Concentrations of sCD95 and sCD95L did not show any differences between MS and healthy control subjects. In patients with MS, treatment with IFN-beta increased serum levels of sCD95 and sCD95L significantly (P < 0.01 and P < 0.05 respectively). Addition of atorvastatin to IFN-beta did not alter serum levels of sCD95 and sCD95L significantly. Our study suggests that atorvastatin does not affect IFN-beta-induced increases of the soluble death receptors in the serum of patients with MS.
Resumo:
BACKGROUND: Increased circulating cortisol levels have been associated with severity of atherosclerosis. Low-grade systemic thrombogenicity plays a major role in the initiation and progression of coronary disease. We hypothesized a direct relationship between cortisol and hemostasis factors related to a prothrombotic state in coronary artery disease. METHODS: We measured morning serum cortisol and activated clotting factor VII, fibrinogen, von Willebrand factor antigen, and plasminogen activator inhibitor-1 activity in 285 women (56 +/- 7 years) between 3 and 6 months after an acute coronary event. To test whether the relationship between cortisol and hemostasis factors would be independent, statistical adjustment was made for demographic, biomedical, life style, and psychosocial variables. RESULTS: Higher serum cortisol levels predicted higher fibrinogen (beta = .17, P = .001) and higher von Willebrand factor (beta = .16, P = .008), all independently of covariates, including C-reactive protein, which was also an independent predictor of fibrinogen (beta = .20, P = .001) and von Willebrand factor (beta = .16, P = .004). Higher levels of vital exhaustion were associated with higher levels of activated clotting factor VII independently of covariates and depression (beta = .18, P = .045). Cortisol showed crude correlations with vital exhaustion (r = .14, P = .022) and with depression (r = .13, P = .043) but did not mediate the relationship between psychosocial variables and hemostatic factors. CONCLUSIONS: Morning serum cortisol showed a modest but independent association with prothrombotic activity in women with coronary artery disease suggesting that increased cortisol levels might contribute to atherosclerosis via eliciting a hypercoagulable state.
Resumo:
The introduction of cyclosporine A (CyA) into the immunosuppressive therapy has significantly improved the results of heart transplantation (HTX). Its nephrotoxicity and hepatotoxicity, however, often limit the perioperative and postoperative use of this drug. The purpose of this retrospective study was to evaluate the effect of early postoperative CyA blood levels on the incidence of early as well as late cardiac rejection and patients' survival. Between October 1985 and June 1991, HTX was performed in 311 patients. Standard immunosuppression consisted of azathioprine (1-2 mg/kg), prednisolone (0.5 to 0.1 mg/kg) and CyA. Rabbit-antithymocyte-globulin (RATG - 1.5 mg/kg) was administered for the first 4 days postoperatively. Moderate rejection was treated with 3 x 500 mg methylprednisolone, severe rejection with RATG (1.5 mg/kg three times a day). Patients were excluded from this study because of a positive cross-matching, early death unrelated to rejection or alternate forms of immunosuppression (n = 111). Follow-up was complete in 200 patients (mean age 44 +/- 11; 18 female, 182 male; 204,233 patient days) with a total of 5380 biopsies. The cohort was divided into group I (no CyA for day 0 to 2; n = 108) and group II (CyA during day 0 to 2; n = 92) according to the onset of CyA therapy. In 101 patients (group A) the mean CyA blood level was less than 150 ng/ml from day 0 to 14 and in 99 patients more than 150 ng/ml (group B).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
BACKGROUND: Xenoreactive human natural antibodies (NAb) are predominantly directed against galactose-alpha(1,3)galactose (Gal). Binding of immunoglobulin (Ig) G and IgM NAb activates porcine endothelial cells (pEC) and triggers complement lysis responsible for hyperacute xenograft rejection. In vitro, IgG NAb induce human natural killer (NK) cell-mediated lysis of pEC by antibody-dependent cell-mediated cytotoxicity (ADCC). The present study examined the levels of anti-porcine NAb in a large number of individuals and addressed the functional role of non-Gal anti-porcine NAb. METHODS: Sera from 120 healthy human blood donors were analyzed for the presence of anti-porcine NAb by flow cytometry using porcine red blood cells (pRBC), lymphoblastoid cells (pLCL), and pEC derived from control or Gal-deficient pigs. Xenogeneic complement lysis was measured by flow cytometry using human serum and rabbit complement. ADCC was analyzed by chromium-release assays using human serum and freshly isolated NK cells. RESULTS: Human IgM binding to pRBC was found in 93% and IgG binding in 86% of all samples. Non-Gal NAb comprised 13% of total IgM and 36% of total IgG binding to pEC. NAb/complement-induced lysis and ADCC of Gal-deficient compared to Gal-positive pEC were 21% and 29%, respectively. The majority of anti-Gal and non-Gal IgG NAb were of the IgG2 subclass. CONCLUSIONS: The generation of Gal-deficient pigs has overcome hyperacute anti-Gal-mediated xenograft rejection in nonhuman primates. Non-Gal anti-porcine NAb represent a potentially relevant immunological hurdle in a subgroup of individuals by inducing endothelial damage in xenografts.
Resumo:
Mast cell degranulation is pivotal to allergic diseases; investigating novel pathways triggering mast cell degranulation would undoubtedly have important therapeutic potential. FcepsilonRI-mediated degranulation has contradictorily been shown to require SphK1 or SphK2, depending on the reports. We investigated the in vitro and in vivo specific role(s) of SphK1 and SphK2 in FcepsilonRI-mediated responses, using specific small interfering RNA-gene silencing. The small interfering RNA-knockdown of SphK1 in mast cells inhibited several signaling mechanisms and effector functions, triggered by FcepsilonRI stimulation including: Ca(2+) signals, NFkappaB activation, degranulation, cytokine/chemokine, and eicosanoid production, whereas silencing SphK2 had no effect at all. Moreover, silencing SPHK1 in vivo, in different strains of mice, strongly inhibited mast cell-mediated anaphylaxis, including inhibition of vascular permeability, tissue mast cell degranulation, changes in temperature, and serum histamine and cytokine levels, whereas silencing SPHK2 had no effect and the mice developed anaphylaxis. Our data differ from a recent report using SPHK1(-/-) and SPHK2(-/-) mice, which showed that SphK2 was required for FcepsilonRI-mediated mast cell responses. We performed experiments in mast cells derived from SPHK1(-/-) and SPHK2(-/-) mice and show that the calcium response and degranulation, triggered by FcepsilonRI-cross-linking, is not different from that triggered in wild-type cells. Moreover, IgE-mediated anaphylaxis in the knockout mice showed similar levels in temperature changes and serum histamine to that from wild-type mice, indicating that there was no protection from anaphylaxis for either knockout mice. Thus, our data strongly suggest a previously unrecognized compensatory mechanism in the knockout mice, and establishes a role for SphK1 in IgE-mediated mast cell responses.
Resumo:
BACKGROUND: Elevated lactate and interleukin-6 (IL-6) levels were shown to correlate with mortality and multiple organ dysfunction in severely traumatized patients. The purpose of this study was to test whether an association exists between 24-hour lactate clearance, IL-6 and procalcitonin (PCT) levels, and the development of infectious complications in trauma patients. METHODS: A total of 1757 consecutive trauma patients with an Injury Severity Score (ISS) > 16 admitted over a 10-year period were retrospectively analyzed over a 21-day period. Exclusion criteria included death within 72 h of admission (24.5%), late admission > 12 h after injury (16%), and age < 16 years (0.5%). Data are stated as the median (range). RESULTS: Altogether, 1032 trauma patients (76.2% male) with an average age of 38 years, a median ISS of 29 (16-75), and an Acute Physiology, Age, and Chronic Health Evaluation (APACHE) II score of 14 (0-40) were evaluated. The in-hospital mortality (>3 days) was 10%. Patients with insufficient 24-hour lactate clearance had a high rate of overall mortality and infections. Elevated early serum procalcitonin on days 1 to 5 after trauma was strongly associated with the subsequent development of sepsis (p < 0.01) but not with nonseptic infections. The kinetics of IL-6 were similar to those of PCT but did differentiate between infected and noninfected patients after day 5. CONCLUSIONS: This study demonstrates that elevated early procalcitonin and IL-6 levels and inadequate 24-hour lactate clearance help identify trauma patients who develop septic and nonseptic infectious complications. Definition of specific cutoff values and early monitoring of these parameters may help direct early surgical and antibiotic therapy and reduce infectious mortality.
Resumo:
OBJECTIVES: Mannan-binding lectin (MBL) acts as a pattern-recognition molecule directed against oligomannan, which is part of the cell wall of yeasts and various bacteria. We have previously shown an association between MBL deficiency and anti-Saccharomyces cerevisiae mannan antibody (ASCA) positivity. This study aims at evaluating whether MBL deficiency is associated with distinct Crohn's disease (CD) phenotypes. METHODS: Serum concentrations of MBL and ASCA were measured using ELISA (enzyme-linked immunosorbent assay) in 427 patients with CD, 70 with ulcerative colitis, and 76 healthy controls. CD phenotypes were grouped according to the Montreal Classification as follows: non-stricturing, non-penetrating (B1, n=182), stricturing (B2, n=113), penetrating (B3, n=67), and perianal disease (p, n=65). MBL was classified as deficient (<100 ng/ml), low (100-500 ng/ml), and normal (500 ng/ml). RESULTS: Mean MBL was lower in B2 and B3 CD patients (1,503+/-1,358 ng/ml) compared with that in B1 phenotypes (1,909+/-1,392 ng/ml, P=0.013). B2 and B3 patients more frequently had low or deficient MBL and ASCA positivity compared with B1 patients (P=0.004 and P<0.001). Mean MBL was lower in ASCA-positive CD patients (1,562+/-1,319 ng/ml) compared with that in ASCA-negative CD patients (1,871+/-1,320 ng/ml, P=0.038). In multivariate logistic regression modeling, low or deficient MBL was associated significantly with B1 (negative association), complicated disease (B2+B3), and ASCA. MBL levels did not correlate with disease duration. CONCLUSIONS: Low or deficient MBL serum levels are significantly associated with complicated (stricturing and penetrating) CD phenotypes but are negatively associated with the non-stricturing, non-penetrating group. Furthermore, CD patients with low or deficient MBL are significantly more often ASCA positive, possibly reflecting delayed clearance of oligomannan-containing microorganisms by the innate immune system in the absence of MBL.
Resumo:
Annexin-1 (ANXA1) is a mediator of the anti-inflammatory actions of endogenous and exogenous glucocorticoids (GC). The mechanism of ANXA1 effects on cytokine production in macrophages is unknown and is here investigated in vivo and in vitro. In response to LPS administration, ANXA1(-/-) mice exhibited significantly increased serum IL-6 and TNF compared with wild-type (WT) controls. Similarly, LPS-induced IL-6 and TNF were significantly greater in ANXA1(-/-) than in WT peritoneal macrophages in vitro. In addition, deficiency of ANXA1 was associated with impairment of the inhibitory effects of dexamethasone (DEX) on LPS-induced IL-6 and TNF in macrophages. Increased LPS-induced cytokine expression in the absence of ANXA1 was accompanied by significantly increased LPS-induced activation of ERK and JNK MAPK and was abrogated by inhibition of either of these pathways. No differences in GC effects on MAPK or MAPK phosphatase 1 were observed in ANXA1(-/-) cells. In contrast, GC-induced expression of the regulatory protein GILZ was significantly reduced in ANXA1(-/-) cells by silencing of ANXA1 in WT cells and in macrophages of ANXA1(-/-) mice in vivo. GC-induced GILZ expression and GC inhibition of NF-kappaB activation were restored by expression of ANXA1 in ANXA1(-/-) cells, and GILZ overexpression in ANXA1(-/-) macrophages reduced ERK MAPK phosphorylation and restored sensitivity of cytokine expression and NF-kappaB activation to GC. These data confirm ANXA1 as a key inhibitor of macrophage cytokine expression and identify GILZ as a previously unrecognized mechanism of the anti-inflammatory effects of ANXA1.
Resumo:
Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.
Resumo:
H-ficolin (Hakata antigen, ficolin-3) activates the lectin pathway of complement similar to mannose-binding lectin. However, its impact on susceptibility to infection is currently unknown. This study investigated whether the serum concentration of H-ficolin at diagnosis is associated with fever and neutropenia (FN) in paediatric cancer patients. H-ficolin was measured by time-resolved immunofluorometric assay in serum taken at cancer diagnosis from 94 children treated with chemotherapy. The association of FN episodes with H-ficolin serum concentration was analysed by multivariate Poisson regression. Median concentration of H-ficolin in serum was 26 mg/l (range 6-83). Seven (7%) children had low H-ficolin (< 14 mg/l). During a cumulative chemotherapy exposure time of 82 years, 177 FN episodes were recorded, 35 (20%) of them with bacteraemia. Children with low H-ficolin had a significantly increased risk to develop FN [relative risk (RR) 2.24; 95% confidence interval (CI) 1.38-3.65; P = 0.004], resulting in prolonged duration of hospitalization and of intravenous anti-microbial therapy. Bacteraemia occurred more frequently in children with low H-ficolin (RR 2.82; CI 1.02-7.76; P = 0.045). In conclusion, low concentration of H-ficolin was associated with an increased risk of FN, particularly FN with bacteraemia, in children treated with chemotherapy for cancer. Low H-ficolin thus represents a novel risk factor for chemotherapy-related infections.
Resumo:
To compare the effects of vitamin D analogs versus calcitriol on serum levels of Ca, P and parathyroid hormone (PTH). A compound better than calcitriol should increase the Ca x P product less than calcitriol for an equivalent decrease in PTH levels.
Resumo:
Although hypoalbuminaemia after injury may result from increased vascular permeability, dilution secondary to crystalloid infusions may contribute significantly. In this double-blind crossover study, the effects of bolus infusions of crystalloids on serum albumin, haematocrit, serum and urinary biochemistry and bioelectrical impedance analysis were measured in healthy subjects. Ten male volunteers received 2-litre infusions of 0.9% (w/v) saline or 5% (w/v) dextrose over 1 h; infusions were carried out on separate occasions, in random order. Weight, haemoglobin, serum albumin, serum and urinary biochemistry and bioelectrical impedance were measured pre-infusion and hourly for 6 h. The serum albumin concentration fell in all subjects (20% after saline; 16% after dextrose) by more than could be explained by dilution alone. This fall lasted more than 6 h after saline infusion, but values had returned to baseline 1 h after the end of the dextrose infusion. Changes in haematocrit and haemoglobin were less pronounced (7.5% after saline; 6.5% after dextrose). Whereas all the water from dextrose was excreted by 2 h after completion of the infusion, only one-third of the sodium and water from the saline had been excreted by 6 h, explaining its persistent diluting effect. Impedances rose after dextrose and fell after saline (P<0.001). Subjects voided more urine (means 1663 and 563 ml respectively) of lower osmolality (means 129 and 630 mOsm/kg respectively) and sodium content (means 26 and 95 mmol respectively) after dextrose than after saline (P<0.001). While an excess water load is excreted rapidly, an excess sodium load is excreted very slowly, even in normal subjects, and causes persistent dilution of haematocrit and serum albumin. The greater than expected change in serum albumin concentration when compared with that of haemoglobin suggests that, while dilution is responsible for the latter, redistribution also has a role in the former. Changes in bioelectrical impedance may reflect the electrolyte content rather than the volume of the infusate, and may be unreliable for clinical purposes.
Resumo:
Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1 β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis.