993 resultados para Sensor de ultrasom
Resumo:
Log-polar image architectures, motivated by the structure of the human visual field, have long been investigated in computer vision for use in estimating motion parameters from an optical flow vector field. Practical problems with this approach have been: (i) dependence on assumed alignment of the visual and motion axes; (ii) sensitivity to occlusion form moving and stationary objects in the central visual field, where much of the numerical sensitivity is concentrated; and (iii) inaccuracy of the log-polar architecture (which is an approximation to the central 20°) for wide-field biological vision. In the present paper, we show that an algorithm based on generalization of the log-polar architecture; termed the log-dipolar sensor, provides a large improvement in performance relative to the usual log-polar sampling. Specifically, our algorithm: (i) is tolerant of large misalignmnet of the optical and motion axes; (ii) is insensitive to significant occlusion by objects of unknown motion; and (iii) represents a more correct analogy to the wide-field structure of human vision. Using the Helmholtz-Hodge decomposition to estimate the optical flow vector field on a log-dipolar sensor, we demonstrate these advantages, using synthetic optical flow maps as well as natural image sequences.
Resumo:
Rachit Agarwal, Rafael V. Martinez-Catala, Sean Harte, Cedric Segard, Brendan O'Flynn, "Modeling Power in Multi-functionality Sensor Network Applications," sensorcomm, pp.507-512, 2008 Proceedings of the Second International Conference on Sensor Technologies and Applications, August 25-August 31 2008, Cap Esterel, France
Resumo:
Adequate hand-washing has been shown to be a critical activity in preventing the transmission of infections such as MRSA in health-care environments. Hand-washing guidelines published by various health-care related institutions recommend a technique incorporating six hand-washing poses that ensure all areas of the hands are thoroughly cleaned. In this paper, an embedded wireless vision system (VAMP) capable of accurately monitoring hand-washing quality is presented. The VAMP system hardware consists of a low resolution CMOS image sensor and FPGA processor which are integrated with a microcontroller and ZigBee standard wireless transceiver to create a wireless sensor network (WSN) based vision system that can be retargeted at a variety of health care applications. The device captures and processes images locally in real-time, determines if hand-washing procedures have been correctly undertaken and then passes the resulting high-level data over a low-bandwidth wireless link. The paper outlines the hardware and software mechanisms of the VAMP system and illustrates that it offers an easy to integrate sensor solution to adequately monitor and improve hand hygiene quality. Future work to develop a miniaturized, low cost system capable of being integrated into everyday products is also discussed.
Resumo:
This research focuses on the design and implementation of a tool to speed-up the development and deployment of heterogeneous wireless sensor networks. The THAWS (Tyndall Heterogeneous Automated Wireless Sensors) tool can be used to quickly create and configure application-specific sensor networks. THAWS presents the user with a choice of options, in order to characterise the desired functionality of the network. With this information, THAWS generates the necessary code from pre-written templates and well-tested, optimized software modules. This is then automatically compiled to form binary files for each node in the network. Wireless programming of the network completes the task of targeting the wireless network towards a specific sensing application. THAWS is an adaptable tool that works with both homogeneous and heterogeneous networks built from wireless sensor nodes that have been developed in the Tyndall National Institute.
Resumo:
Two complementary wireless sensor nodes for building two-tiered heterogeneous networks are presented. A larger node with a 25 mm by 25 mm size acts as the backbone of the network, and can handle complex data processing. A smaller, cheaper node with a 10 mm by 10 mm size can perform simpler sensor-interfacing tasks. The 25mm node is based on previous work that has been done in the Tyndall National Institute that created a modular wireless sensor node. In this work, a new 25mm module is developed operating in the 433/868 MHz frequency bands, with a range of 3.8 km. The 10mm node is highly miniaturised, while retaining a high level of modularity. It has been designed to support very energy efficient operation for applications with low duty cycles, with a sleep current of 3.3 μA. Both nodes use commercially available components and have low manufacturing costs to allow the construction of large networks. In addition, interface boards for communicating with nodes have been developed for both the 25mm and 10mm nodes. These interface boards provide a USB connection, and support recharging of a Li-ion battery from the USB power supply. This paper discusses the design goals, the design methods, and the resulting implementation.
Resumo:
Complex systems, from environmental behaviour to electronics reliability, can now be monitored with Wireless Sensor Networks (WSN), where multiple environmental sensors are deployed in remote locations. This ensures aggregation and reading of data, at lower cost and lower power consumption. Because miniaturisation of the sensing system is hampered by the fact that discrete sensors and electronics consume board area, the development of MEMS sensors offers a promising solution. At Tyndall, the fabrication flow of multiple sensors has been made compatible with CMOS circuitry to further reduce size and cost. An ideal platform on which to host these MEMS environmental sensors is the Tyndall modular wireless mote. This paper describes the development and test of the latest sensors incorporating temperature, humidity, corrosion, and gas. It demonstrates their deployment on the Tyndall platform, allowing real-time readings, data aggregation and cross-correlation capabilities. It also presents the design of the next generation sensing platform using the novel 10mm wireless cube developed by Tyndall.
Resumo:
Existing Building/Energy Management Systems (BMS/EMS) fail to convey holistic performance to the building manager. A 20% reduction in energy consumption can be achieved by efficiently operated buildings compared with current practice. However, in the majority of buildings, occupant comfort and energy consumption analysis is primarily restricted by available sensor and meter data. Installation of a continuous monitoring process can significantly improve the building systems’ performance. We present WSN-BMDS, an IP-based wireless sensor network building monitoring and diagnostic system. The main focus of WSN-BMDS is to obtain much higher degree of information about the building operation then current BMSs are able to provide. Our system integrates a heterogeneous set of wireless sensor nodes with IEEE 802.11 backbone routers and the Global Sensor Network (GSN) web server. Sensing data is stored in a database at the back office via UDP protocol and can be access over the Internet using GSN. Through this demonstration, we show that WSN-BMDS provides accurate measurements of air-temperature, air-humidity, light, and energy consumption for particular rooms in our target building. Our interactive graphical user interface provides a user-friendly environment showing live network topology, monitor network statistics, and run-time management actions on the network. We also demonstrate actuation by changing the artificial light level in one of the rooms.
Resumo:
In this paper, The radio Frequency (RF) Monitoring and Measurement of the Environmental Research Institute (ERI) located in Cork city will be monitored and analyzed in both the Zigbee (2.44 GHz) and the industrial, scientific and medical (ISM 433 MHz). The main objective of this survey is to confirm what the noise and interferences threat signals exist in these bands. It was agreed that the surveys would be carried out in 5 different rooms and areas that are candidates for the Wireless Sensors deployments. Based on the carried on study, A Zigbee standard Wireless Sensor Network (WSN) will be developed employing a number of motes for sensing number of signals like temperature, light and humidity beside the RSSI and battery voltage monitoring. Such system will be used later on to control and improve indoor building climate at reduced costs, remove the need for cabling and both installation and operational costs are significantly reduced.
Resumo:
For many wireless sensor networks applications, indoor light energy is the only ambient energy source commonly available. Many advantages and constraints co-exist in this technology. However, relatively few indoor light powered harvesters have been presented and much research remains to be carried out on a variety of related design considerations and trade-offs. This work presents a solution using the Tyndall mote and an indoor light powered wireless sensor node. It analyses design considerations on several issues such as indoor light characteristics, solar panel component choice, maximum power point tracking, energy storage elements and the trade-offs and choices between them.
Resumo:
In this paper, a wireless sensor network mote hardware design and implementation are introduced for building deployment application. The core of the mote design is based on the 8 bit AVR microcontroller, Atmega1281 and 2.4 GHz wireless communication chip, CC2420. The module PCB fabrication is using the stackable technology providing powerful configuration capability. Three main layers of size 25 mm2 are structured to form the mote; these are RF, sensor and power layers. The sensors were selected carefully to meet both the building monitoring and design requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks. Experiments show that the developed mote works effectively in giving stable data acquisition and owns good communication and power performance.
Resumo:
This work considers the effect of hardware constraints that typically arise in practical power-aware wireless sensor network systems. A rigorous methodology is presented that quantifies the effect of output power limit and quantization constraints on bit error rate performance. The approach uses a novel, intuitively appealing means of addressing the output power constraint, wherein the attendant saturation block is mapped from the output of the plant to its input and compensation is then achieved using a robust anti-windup scheme. A priori levels of system performance are attained using a quantitative feedback theory approach on the initial, linear stage of the design paradigm. This hybrid design is assessed experimentally using a fully compliant 802.15.4 testbed where mobility is introduced through the use of autonomous robots. A benchmark comparison between the new approach and a number of existing strategies is also presented.
Resumo:
The goal of this work is to fabricate robust, highly-miniaturised, wireless sensor modules that incorporates ion-selective electrodes (ISEs). pH is one of the main parameters in assessment of the quality of our environment (water, soil) and these ISE/pH sensors will be deployed in a miniaturised, programmable modular system. The simplicity of ISEs (low costs and low power requirements) allow for the preparation of sensors that are all very similar in construction but can at the same time be easily made for variety of different environmentally important ions (i.e. heavy metals). This is important because of the increasing focus on the impact of the quality of the environment on society, both locally, and globally. The work described will contribute to a widely distributed sensor network for monitoring the quality of our environment, focused mainly on soil and water quality.
Resumo:
This paper reports on the design and the manufacturing of an integrated DCDC converter, which respects the specificity of sensor node network: compactness, high efficiency in acquisition and transmission modes, and compatibility with miniature Lithium batteries. A novel integrated circuit (ASIC) has been designed and manufactured to provide regulated Voltage to the sensor node from miniaturized, thin film Lithium batteries. Then, a 3D integration technique has been used to integrate this ASIC in a 3 layers stack with high efficiency passives components, mixing the wafer level technologies from two different research institutions. Electrical results have demonstrated the feasibility of this integrated system and experiments have shown significant improvements in the case of oscillations in regulated voltage. However, stability of this output voltage toward the input voltage has still to be improved.
Resumo:
A comparison study was carried out between a wireless sensor node with a bare die flip-chip mounted and its reference board with a BGA packaged transceiver chip. The main focus is the return loss (S parameter S11) at the antenna connector, which was highly depended on the impedance mismatch. Modeling including the different interconnect technologies, substrate properties and passive components, was performed to simulate the system in Ansoft Designer software. Statistical methods, such as the use of standard derivation and regression, were applied to the RF performance analysis, to see the impacts of the different parameters on the return loss. Extreme value search, following on the previous analysis, can provide the parameters' values for the minimum return loss. Measurements fit the analysis and simulation well and showed a great improvement of the return loss from -5dB to -25dB for the target wireless sensor node.
Design and implementation of the embedded capacitance layers for decoupling of wireless sensor nodes
Resumo:
In this paper, the embedded capacitance material (ECM) is fabricated between the power and ground layers of the wireless sensor nodes, forming an integrated capacitance to replace the large amount of decoupling capacitors on the board. The ECM material, whose dielectric constant is 16, has the same size of the wireless sensor nodes of 3cm*3cm, with a thickness of only 14μm. Though the capacitance of a single ECM layer being only around 8nF, there are two reasons the ECM layers can still replace the high frequency decoupling capacitors (100nF in our case) on the board. The first reason is: the parasitic inductance of the ECM layer is much lower than the surface mount capacitors'. A smaller capacitance value of the ECM layer could achieve the same resonant frequency of the surface mount decoupling capacitors. Simulation and measurement fit this assumption well. The second reason is: more than one layer of ECM material are utilized during the design step to get a parallel connection of the several ECM capacitance layers, finally leading to a larger value of the capacitance and smaller value of parasitic. Characterization of the ECM is carried out by the LCR meter. To evaluate the behaviors of the ECM layer, time and frequency domain measurements are performed on the power-bus decoupling of the wireless sensor nodes. Comparison with the measurements of bare PCB board and decoupling capacitors solution are provided to show the improvement of the ECM layer. Measurements show that the implementation of the ECM layer can not only save the space of the surface mount decoupling capacitors, but also provide better power-bus decoupling to the nodes.