952 resultados para Scientific Data Visualisation
Resumo:
The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Big Decisions and Sparse Data: Adapting Scientific Publishing to the Needs of Practical Conservation
Resumo:
The biggest challenge in conservation biology is breaking down the gap between research and practical management. A major obstacle is the fact that many researchers are unwilling to tackle projects likely to produce sparse or messy data because the results would be difficult to publish in refereed journals. The obvious solution to sparse data is to build up results from multiple studies. Consequently, we suggest that there needs to be greater emphasis in conservation biology on publishing papers that can be built on by subsequent research rather than on papers that produce clear results individually. This building approach requires: (1) a stronger theoretical framework, in which researchers attempt to anticipate models that will be relevant in future studies and incorporate expected differences among studies into those models; (2) use of modern methods for model selection and multi-model inference, and publication of parameter estimates under a range of plausible models; (3) explicit incorporation of prior information into each case study; and (4) planning management treatments in an adaptive framework that considers treatments applied in other studies. We encourage journals to publish papers that promote this building approach rather than expecting papers to conform to traditional standards of rigor as stand-alone papers, and believe that this shift in publishing philosophy would better encourage researchers to tackle the most urgent conservation problems.
Resumo:
Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.
Resumo:
OBJETIVO: Traçar o perfil das publicações científicas de fase I e procurar saber se a publicação oferece dados da fase pré-clínica com ênfase nos aspectos bioéticos. MÉTODOS: Foram analisados 61 artigos científicos publicados no ano de 2007, que relatam pesquisas envolvendo seres humanos com novos fármacos, medicamentos ou vacinas em fase I. Foi elaborado um roteiro para coleta de dados, com o qual fosse possível analisar e avaliar os artigos científicos. O roteiro contempla itens referentes à fase pré-clínica (associados à fase clínica) e itens referentes às características da amostra. RESULTADOS: Nos artigos analisados, a maioria das pesquisas foi realizada nos EUA. Devido ao grande número de publicações destinadas às doenças oncológicas a maioria delas foi realizada com voluntários doentes. Quanto às informações sobre a fase pré-clínica presente nas publicações de fase I observamos que são pobres ou inexistentes. Mesmo que os autores julguem a pesquisa fase I como promissora e sugiram estudos futuros de fase II, ao leitor não é possível este mesmo julgamento pela escassez de informações da fase pré-clínica. CONCLUSÃO: O perfil das publicações levanta dados que merecem reflexão e análise para melhor avaliação do que está ocorrendo com as publicações de fase I.
Resumo:
Presenting visual feedback for image-guided surgery on a monitor requires the surgeon to perform time-consuming comparisons and diversion of sight and attention away from the patient. Deficiencies in previously developed augmented reality systems for image-guided surgery have, however, prevented the general acceptance of any one technique as a viable alternative to monitor displays. This work presents an evaluation of the feasibility and versatility of a novel augmented reality approach for the visualisation of surgical planning and navigation data. The approach, which utilises a portable image overlay device, was evaluated during integration into existing surgical navigation systems and during application within simulated navigated surgery scenarios.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology.
Resumo:
Provenance models are crucial for describing experimental results in science. The W3C Provenance Working Group has recently released the PROV family of specifications for provenance on the Web. While provenance focuses on what is executed, it is important in science to publish the general methods that describe scientific processes at a more abstract and general level. In this paper, we propose P-PLAN, an extension of PROV to represent plans that guid-ed the execution and their correspondence to provenance records that describe the execution itself. We motivate and discuss the use of P-PLAN and PROV to publish scientific workflows as Linked Data.
Resumo:
Mode of access: Internet.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Population measures for genetic programs are defined and analysed in an attempt to better understand the behaviour of genetic programming. Some measures are simple, but do not provide sufficient insight. The more meaningful ones are complex and take extra computation time. Here we present a unified view on the computation of population measures through an information hypertree (iTree). The iTree allows for a unified and efficient calculation of population measures via a basic tree traversal. © Springer-Verlag 2004.