991 resultados para Saturation Impulse
Resumo:
OBJECTIVE: To evaluate the power of various parameters of the vestibulo-ocular reflex (VOR) in detecting unilateral peripheral vestibular dysfunction and in characterizing certain inner ear pathologies. STUDY DESIGN: Prospective study of consecutive ambulatory patients presenting with acute onset of peripheral vertigo and spontaneous nystagmus. SETTING: Tertiary referral center. PATIENTS: Seventy-four patients (40 females, 34 males) and 22 normal subjects (11 females, 11 males) were included in the study. Patients were classified in three main diagnoses: vestibular neuritis: 40; viral labyrinthitis: 22; Meniere's disease: 12. METHODS: The VOR function was evaluated by standard caloric and impulse rotary tests (velocity step). A mathematical model of vestibular function was used to characterize the VOR response to rotational stimulation. The diagnostic value of the different VOR parameters was assessed by uni- and multivariable logistic regression. RESULTS: In univariable analysis, caloric asymmetry emerged as the most powerful VOR parameter in identifying unilateral vestibular deficit, with a boundary limit set at 20%. In multivariable analysis, the combination of caloric asymmetry and rotational time constant asymmetry significantly improved the discriminatory power over caloric alone (p<0.0001) and produced a detection score with a correct classification of 92.4%. In discriminating labyrinthine diseases, different combinations of the VOR parameters were obtained for each diagnosis (p<0.003) supporting that the VOR characteristics differ between the three inner ear disorders. However, the clinical usefulness of these characteristics in separating the pathologies was limited. CONCLUSION: We propose a powerful logistic model combining the indices of caloric and time constant asymmetries to detect a peripheral vestibular loss, with an accuracy of 92.4%. Based on vestibular data only, the discrimination between the different inner ear diseases is statistically possible, which supports different pathophysiologic changes in labyrinthine pathologies.
Resumo:
BACKGROUND: The aim of this study was to assess the pharmacology, toxicity and activity of high-dose ifosfamide mesna +/- GM-CSF administered by a five-day continuous infusion at a total ifosfamide dose of 12-18 g/m2 in adult patients with advanced sarcomas. PATIENTS AND METHODS: Between January 1991 and October 1992 32 patients with advanced or metastatic sarcoma were entered the study. Twenty-seven patients were pretreated including twenty-three with prior ifosfamide at less than 8 g/m2 total dose/cycle. In 25 patients (27 cycles) extensive pharmacokinetic analyses were performed. RESULTS: The area under the plasma concentration-time curve (AUC) for ifosfamide increased linearly with dose while the AUC's of the metabolites measured in plasma by thin-layer chromatography did not increase with dose, particularly that of the active metabolite isophosphoramide mustard. Furthermore the AUC of the inactive carboxymetabolite did not increase with dose. Interpatient variability of pharmacokinetic parameters was high. Dose-limiting toxicity was myelosuppression at 18 g/m2 total dose with grade 4 neutropenia in five of six patients and grade 4 thrombocytopenia in four of six patients. Therefore the maximum tolerated dose was considered to be 18 g/m2 total dose. There was one CR and eleven PR in twenty-nine evaluable patients (overall response rate 41%). CONCLUSION: Both the activation and inactivation pathways of ifosfamide are non-linear and saturable at high-doses although the pharmacokinetics of the parent drug itself are dose linear. Ifosfamide doses greater than 14-16 g/m2 per cycle appear to result in a relative decrease of the active metabolite isophosphoramide mustard. These data suggest a dose-dependent saturation or even inhibition of ifosfamide metabolism by increasing high dose ifosfamide and suggest the need for further metabolic studies.
Resumo:
Cysteine thiol modifications are increasingly recognized to occur under both physiological and pathophysiological conditions, making their accurate detection, identification and quantification of growing importance. However, saturation labeling of thiols with fluorescent dyes results in poor protein recuperation and therefore requires the use of large quantities of starting material. This is especially important in sequential dye-labeling steps when applied for an identification of cysteine modifications. First, we studied the effects of different detergents during labeling procedure, i.e. Tween 20, Triton X-100 and CHAPS, on protein yield and composition. Tween 20 and Triton X-100 resulted in yields of around 50% labeled proteins compared to only 10% with PBS alone and a most diversified 2-DE protein pattern. Secondly, Tween 20 was used for serial protein labeling with maleimid fluorophores, first to conjugate to accessible thiols and after a reduction to label with another fluorophore previously masked di-sulphide and/or oxidized proteins in frontal cortex autopsy tissue of a subject with mild Alzheimer's disease. Two-DE DIGE revealed a complex protein pattern of readily labeled thiols and di-sulphide and/or oxidized proteins. Seventeen proteins were identified by MALDI-TOF and by peptide fingerprints. Several proteins were oxidized and involved in Alzheimer's disease. However methionine oxidation was prevalent. Infrared DIGE may provide an additional tool for an identification of oxidation susceptible proteins.
Resumo:
The effects of liming rates on growth and heart-of-palm yield of peach palm plants (Bactris gasipaes Kunth) were studied in a two-year field experiment conducted in Pariquera-Açu, State of Sao Paulo, Brazil. Soils in this region are allic (sub group Ultic Haplorthox), with base saturation ranging from 15 to 26 % of the cation exchange capacity (CEC). A randomized complete block design, with five rates of dolomitic limestone (0, 0.7, 4.7, 8.7, and 14.6 Mg ha-1) and five replications was utilized. Individual plots were composed of 80 plants but only the inner rows (24 plants) were used for data recording. Planting spacing was 2 x 1 m. There was a cubic effect of liming rates on growth and yield. Maximum heart-of-palm yield was estimated to be achieved at 4.3 Mg ha-1 of limestone application, corresponding to 51.4 % soil base saturation. A significant decrease in growth and yield was observed when large amounts of limestone were applied (8.7 and 14.6 Mg ha-1), probably due to a decreased micronutrient availability.
Resumo:
The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.
Resumo:
Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement-sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram double-blind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5-2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts (∼7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies (∼4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitoring.
Resumo:
It is shown that spatially selective inversion and saturation can be achieved by concatenation of RF pulses with lower flip angles. A concatenation rule which enables global doubling of the flip angle of any given excitation pulse applied to initial z magnetization is proposed. In this fashion, the selectivity of the single pulse is preserved, making the high selectivity achievable in the low flip-angle regime available for inversion and large flip-angle saturation purposes. The profile quality achievable with exemplary concatenated pulses is investigated in comparison with adiabatic inversion. It is verified that by using concatenated inversion in the transfer insensitive labeling technique (TILT), the MT artifact is suppressed. Copyright 2000 Academic Press.
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
A large proportion of soybean fields in Brazil are currently cultivated in the Cerrado region, where the area planted with this crop is growing considerably every year. Soybean cultivation in acid soils is also increasing worldwide. Since the levels of toxic aluminum (Al) in these acid soils is usually high it is important to understand how cations can reduce Al rhizotoxicity in soybean. In the present study we evaluated the ameliorative effect of nine divalent cations (Ca, Mg, Mn, Sr, Sn, Cu, Zn, Co and Ba) in solution culture on Al rhizotoxicity in soybean. The growth benefit of Ca and Mg to plants in an acid Inceptisol was also evaluated. In this experiment soil exchangeable Ca:Mg ratios were adjusted to reach 10 and 60 % base saturation, controlled by different amounts of CaCl2 or MgCl2 (at proportions from 100:0 up to 0:100), without altering the soil pH level. The low (10 %) and adequate (60 %) base saturation were used to examine how plant roots respond to Al at distinct (Ca + Mg)/Al ratios, as if they were growing in soils with distinct acidity levels. Negative and positive control treatments consisted of absence (under native soil or undisturbed conditions) or presence of lime (CaCO3) to reach 10 and 60 % base saturation, respectively. It was observed that in the absence of Aluminum, Cu, Zn, Co and Sn were toxic even at a low concentration (25 µmol L-1), while the effect of Mn, Ba, Sr and Mg was positive or absent on soybean root elongation when used in concentrations up to 100 µmol L-1. At a level of 10 µmol L-1 Al, root growth was only reverted to the level of control plants by the Mg treatment. Higher Tin doses led to a small alleviation of Al rhizotoxicity, while the other cations reduced root growth or had no effect. This is an indication that the Mg effect is ion-specific and not associated to an electrostatic protection mechanism only, since all ions were divalent and used at low concentrations. An increased exchangeable Ca:Mg ratio (at constant soil pH) in the acid soil almost doubled the soybean shoot and root dry matter even though treatments did not modify soil pH and exchangeable Al3+. This indicates a more efficient alleviation of Al toxicity by Mg2+ than by Ca2+. The reason for the positive response to Mg2+ was not the supply of a deficient nutrient because CaCO3 increased soybean growth by increasing soil pH without inducing Mg2+ deficiency. Both in hydroponics and acid soil, the reduction in Al toxicity was accompanied by a lower Al accumulation in plant tissue, suggesting a competitive cation absorption and/or exclusion of Al from plant tissue stimulated by an Mg-induced physiological mechanism.
Resumo:
Dark subsurface horizons, with properties similar to the sombric horizon characterized by the USA Soil Taxonomy, are frequent in Southern Brazil. The genesis of this horizon is controversial and poorly understood. This study aimed to describe the occurrence of sombric-like horizons in Ultisols in the South of Santa Catarina State, at low altitudes, and suggest possible processes of humus transference, accumulation and persistence in these horizons. Physical, chemical and mineralogical properties of four Ultisols were evaluated; three were sampled in a toposequence, and another representative one in an isolated profile (RSP). The dark subsurface horizons coincide with the AB and BA transitional genetic horizons; they are acid, low in base saturation, and have a similar clay mineralogy in all horizons. Very high amounts of Fe and Al extracted by ammonium oxalate and sodium pyrophosphate solution as well as maximum Al extracted by CuCl2 solution were observed in these dark subsurface horizons, indicating a possible migration of these elements in the form of organometallic complexes. The contents of Al plus ½ Fe extracted from the RSP soil horizons with ammonium oxalate indicated spodic materials in the sombric-like horizon, although the soil morphology was not compatible with Spodosols. Maximum contents of fine clay were also found in the sombric-like horizon, suggesting Fe and Al migration as clay-humic substances. However, the hypothesis that sombric-like horizons in these soils are a relict feature of a grass paleovegetation, different from the current dense seasonal forest, should not be discarded but investigated in further studies.
Resumo:
We find that the use of V(100) buffer layers on MgO(001) substrates for the epitaxy of FePd binary alloys yields to the formation at intermediate and high deposition temperatures of a FePd¿FeV mixed phase due to strong V diffusion accompanied by a loss of layer continuity and strong increase of its mosaic spread. Contrary to what is usually found in this kind of systems, these mixed phase structures exhibit perpendicular magnetic anisotropy (PMA) which is not correlated with the presence of chemical order, almost totally absent in all the fabricated structures, even at deposition temperatures where it is usually obtained with other buffer layers. Thus the observed PMA can be ascribed to the V interdiffusion and the formation of a FeV alloy, being the global sample saturation magnetization also reduced.
Resumo:
We report on the study of the structural, magnetic, and electronic properties of SrTiO3 capped La2/3Ca1/3MnO3 electrodes grown on (001) and (110) SrTiO3 substrates. Magnetic properties of the (001) and (110) capped electrodes evolve differently when the capping layer thickness increases, revealing a reduction of the saturation magnetization for the (001) ones. Electronic properties are studied combining 55Mn nuclear magnetic resonance (NMR) and x-ray photoemission spectroscopy (XPS). NMR experiments highlight that electronic phase separation in the (001) electrodes is enhanced by the presence of the SrTiO3 capping layer and XPS measurements show that the electronic state of interfacial Mn ions from (001) electrode is more sensitive to the capping layer.
Resumo:
We report here on the growth of NiFe2O4 epitaxial thin films of different thickness (3 nm ¿ t ¿ 32 nm) on single crystalline substrates having spinel (MgAl2O4) or perovskite (SrTiO3) structure. Ultrathin films, grown on any of those substrates, display a huge enhancement of the saturation magnetization: we will show that partial cationic inversion may account for this enhancement, although we will argue that suppression of antiparallel collinear spin alignment due to size-effects cannot be excluded. Besides, for thicker films, the magnetization of films on MAO is found to be similar to that of bulk ferrite; in contrast, the magnetization of films on STO is substantially lower than bulk. We discuss on the possible mechanisms leading to this remarkable difference of magnetization.
Resumo:
In Rio Grande do Sul State (RS), Southern Brazil, aluminum saturation in many areas under no-till system is high and base saturation low in the 0.10-0.20 m layer (subsurface), which may reduce the grain yield of annual crops. The objective of this study was to evaluate if the occurrence of high aluminum saturation and low base saturation in the subsurface, under a no-till system, represents a restrictive environment for crop production, as well as to evaluate forms of lime incorporation for soil acidity correction in the subsurface. For this purpose, an experiment was carried out with soybean (2005/2006), corn (2006/2007), wheat (2007) and soybean (2007/2008) crops, in a Rhodic Hapludox (USDA, 1999) with sandy loam texture, under no-till for four years in the county of Tupanciretã (RS). The six treatments were: no-tillage with and without lime, plowing with and without lime, and chiseling with and without lime. The values of pH-H2O, aluminum saturation and base saturation were evaluated 24 months after treatment application in the layers 0-0.05; 0.05-0.10; 0.10-0.15; 0.15-0.20 and 0.20-0.30 m. The yields of soybean (2005/2006), corn (2006/2007), wheat (2007) and soybean (2007/2008) were evaluated. Soil acidity in the subsurface did not affect crop yield when the acidity in the layer from 0-0.10 m was at levels for which lime application is not recommended, according to CQFSRS/SC (2004). Lime incorporation through plowing was the most efficient way of correcting acidity at deeper levels.
Resumo:
Nitrogen incorporates into Fe thin films during reactively sputtered TiN capping layer deposition. The influence that this nitrogen incorporation has both on the structure and magnetic properties is discussed for a series of Fe~001! thin films grown at different temperatures. A higher nitrogen content is accompanied by distortion in the Fe lattice and by reduction in the Fe magnetization saturation as well as in the effective anisotropy constant, K. The reduction of K brings as a consequence lowering in the coercive field with respect to equivalent Fe films with no nitrogen present.