950 resultados para SURFACE CHEMISTRY
Resumo:
Late Eocene microtektites and crystal-bearing microkrystites extracted from DSDP and ODP cores from the Atlantic, Pacific, and Indian oceans have been analyzed to address their provenance. A new analysis of Nd and Sr isotopic compositions confirms previous work and the assignment of the uppermost microtektite layer to the North American tektites, which are associated with the 35.5 Ma, 85 km diameter Chesapeake impact structure of Virginia, USA. Extensive major element and Nd and Sr isotopic analyses of the microkrystites from the lowermost layer were obtained. The melanocratic microkrystites from Sites 216 and 462 in the Indian and Pacific oceans possess major element chemistries, Sr and Nd isotopic signatures and Sm-Nd, T CHUR, model ages similar to those of tagamite melt rocks in the Popigai impact structure. They also possess Rb-Sr, T UR, model ages that are younger than the tagamite TCHUR ages by up to ~1 Ga, which require a process, as yet undefined, of Rb/Sr enrichment. These melanocratic microkrystites are consistent with a provenance from the 35.7 Ma, 100 km diameter Popigai impact structure of Siberia, Russia, while ruling out other contemporaneous structures as a source. Melanocratic microkrystites from other sites and leucocratic microkrystites from all sites possess a wide range of isotopic compositions (epsilon (143Nd) values of -16 to -27.7 and epsilon (87Sr) values of 4.1-354.0), making the association with Popigai tagamites less clear. These microkrystites may have been derived by the melting of target rocks of mixed composition, which were ejected without homogenization. Dark glass and felsic inclusions extracted from Popigai tagamites possess epsilon (143Nd) and epsilon (87Sr) values of -26.7 to -27.8 and 374.7 and 432.4, respectively, and T CHUR and T UR model ages of 1640-1870 Ma and 240-1830 Ma, respectively, which require the preservation of initially present heterogeneity in the source materials. The leucocratic microkrystites possess diverse isotopic compositions that may reflect the melting of supra-basement sedimentary rocks from Popigai, or early basement melts that were ejected prior to homogenization of the Popigai tagamites. The ejection of melt rocks with chemistries consistent with a basement provenance, rather than the surface ~1 km of sedimentary cover rocks, atypically indicates a non-surficial source to some of the ejecta. Microkrystites from two adjacent biozones possess statistically indistinguishable major element compositions, suggesting they have a single source. The occurrence of microkrystites derived from a single impact event, but in different biozones, can be explained by: (1) diachronous biozone boundaries; (2) post-accumulation sedimentary reworking; or (3) erroneous biozonation.
Resumo:
Among marine calcifiers, shelled pteropods are expected to be particularly sensitive to ocean acidification, generated by the uptake of anthropogenic CO2 by the ocean, and the associated decrease of the seawater saturation state with respect to aragonite (omega aragonite). The few available studies have mostly focused on polar species although pteropods are also important components of temperate and tropical ecosystems. It is also unknown which parameter of the carbonate system controls calcification. Specimens of the temperate Mediterranean species Creseis acicula were maintained under seven different conditions of the carbonate chemistry, obtained by manipulating pH and total alkalinity, with the goal to disentangle the effects of pH and omega aragonite. Respiration, excretion as well as rates of net and gross calcification were not directly affected by a decrease in pH but decreased significantly with a decrease of omega aragonite. The decrease of gross calcification rates is consistent with that reported for polar species. Although the organisms were apparently able to maintain gross calcification rates under slightly undersaturated aragonite conditions, the clear net dissolution signal observed below saturation suggests that they are not able to build a shell in seawater corrosive to aragonite. The decrease in respiration and excretion, and the low O:N molar ratio, could be due to the short time that the organisms were allowed to acclimatize to their new environment.
Resumo:
The Galicia margin lies northwest of the Iberian Peninsula and is a passive ocean margin with thin sedimentary cover. Altered peridotite was recovered from ODP Site 637, on the north-trending ridge at the western edge of the margin, near the oceanic/continental crust boundary. The altered ultramafics were originally clinopyroxene-rich upper mantle harzburgites and are now extensively serpentinized (>85%) and cut by very late-stage carbonate veins. Despite pervasive late, low-temperature alteration, evidence of early, high-temperature alteration remains. Alteration is apparent as (1) amphibole rims on clinopyroxene (>800°C), (2) hornblende + tremolite (450° to 800°C), (3) breakdown of hornblende to form tremolite + chlorite (<450°C), (4) zoned Cr-spinels, (5) hydration of orthopyroxene and olivine to serpentine, (6) serpentine veins, (7) replacement of pyroxene and olivine by calcite, and (8) calcite veins and vugs. Both the relict igneous and the high-temperature alteration minerals (amphiboles) show evidence of brittle deformation. Subsequent low-temperature alteration veins and minerals are deformed only in faulted and brecciated zones. This textural evidence suggests that the low-temperature alteration occurred after emplacement of the ultramafics at the surface. Serpentine fills tension fractures in orthopyroxene, and both serpentine and calcite fill tension cracks in olivine. The high-temperature alterations in these samples are similar to those found in oceanic fracture zone and ophiolite ultramafics. This widespread occurrence of high-temperature alteration suggests that hot fluids were pervasive in these ultramafic blocks. Localization of high-temperature alteration close to large carbonate veins suggests channelization of the late, low-temperature fluids. Earlier hydrations (e.g., high-temperature alterations and serpentinization) were pervasive.
Resumo:
Based on grain-size, mineralogical and chemical analyses of samples collected in cruises of R/V Ekolog (Institute of Northern Water Problems, Karelian Research Centre of RAS, Petrozavodsk) in 2001 and 2003 regularities of chemical element distribution in surface layer bottom sediments of the Kem' River Estuary in the White Sea were studied. For some toxic elements labile and refractory forms were determined. Correlation analysis was carried out and ratios Me/Al were calculated as proxies of terrigenous contribution. Distribution of such elements as Fe, Mn, Zn, Cr, Ti was revealed to be influenced by natural factors, mainly by grain size composition of bottom sediments. These metals have a tendency for accumulation in fine-grained sediments with elevated organic carbon contents. Distribution of Ni is different from one of Fe, Mn, Zn, Cr, Ti. An assumption was made that these distinctions were caused by anthropogenic influence.