953 resultados para STEM-LIKE CELLS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Les maladies cardio-vasculaires (MCV), telles que l’hypertension et l’athérosclérose, s’accompagnent de modifications structurales et fonctionnelles au niveau vasculaire. Un fonctionnement aberrant de la migration, l’hypertrophie et la prolifération des cellules musculaires lisses vasculaires (CMLV) sont des évènements cellulaires à l’origine de ces changements. L’endothéline-1 (ET-1) contribue à la pathogénèse des anomalies vasculaires, notamment via l’activation des protéines MAPK et PI3-K/PKB, des composantes clés impliquées dans les voies prolifératives et de croissance cellulaires. Il a été suggéré que le stress oxydant jouerait un rôle intermédiaire dans les effets pathophysiologiques vasculaires de l’ET-1. En conséquence, une modulation de la signalisation induite par l’ET-1 peut servir comme éventuelle stratégie thérapeutique contre le développement des MCV. Il apparaît de nos jours un regain d’intérêt dans l’utilisation des agents phyto-chimiques pour traiter plusieurs maladies. La curcumine, constituant essentiel de l’épice curcuma, est dotée de plusieurs propriétés biologiques parmi lesquelles des propriétés anti-oxydantes, anti-prolifératrices et cardio-protectrices. Cependant, les mécanismes moléculaires de son effet cardio-protecteur demeurent obscurs. Dans cette optique, l’objectif de cette étude a été d’examiner l’efficacité de la curcumine à inhiber la signalisation induite par l’ET-1 dans les CMLV. La curcumine a inhibé la phosphorylation des protéines IGF-1R, PKB, c-Raf et ERK1/2, induite par l’ET-1 et l’IGF-1. De plus, la curcumine a inhibé l’expression du facteur de transcription Egr-1 induite par l’ET-1 et l’IGF-1, dans les CMLV. Ces résultats suggèrent que la capacité de la curcumine à atténuer ces voies de signalisation serait un mécanisme d’action potentiel de ses effets protecteurs au niveau cardiovasculaire.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Le mécanisme biologique responsable pour l’augmentation de l’expression de la protéine nestin dans les cellules souches neurales (CSN) du cœur après un infarctus du myocarde (IM) demeure inconnu. Des études antérieures ont démontré que le traitement au dexamethasone, un glucocorticoïde aux propriétés anti-inflammatoires, abolit la régulation positive de nestin après un IM. Ceci suggère un lien avec la réponse inflammatoire. Nous avons vérifié dans cette étude l’hypothèse que la cytokine inflammatoire interleukin-1beta (IL-1beta) peut modifier le phénotype de cellules souches neurales. Le deuxième objectif de l’étude fut d’établir l’impact, suivant un IM, de l’inhibition de la signalisation de IL-1beta sur la fonction et la guérison cardiaque. Suite à une ligature complète de l’artère coronaire du rat mâle, le dysfonctionnement contractile du ventricule gauche fut associé à une régulation positive de la protéine nestin dans le myocarde non-infarci. Le traitement avec Xoma 052 (1 mg/kg), un anticorps anti-IL-1beta, 24h, 7 et 14 jours après un évènement ischémique, eu aucun effet sur la taille de l’infarctus ou la contractilité du ventricule gauche. De plus, le traitement avec Xoma 052 après un IM n’a pu supprimer l’augmentation de l’expression de nestin et Bcl-2 malgré une réduction modeste du niveau de la protéine Bax. Pour déterminer directement le rôle de la réponse inflammatoire en l’absence d’ischémie, nous avons injecté des rats mâles avec du LPS (10mg/kg, 18hrs). Dans le coeur du rat-LPS, nous avons noté une augmentation significative du niveau d’ARNm de IL-1beta et de l’expression de la protéine nestin. Le prétraitement avec 10mg/kg de Xoma 052 a aboli l’augmentation de l’expression de nestin dans le coeur des rats-LPS. Ces observations indiquent que les cellules souches neurales pourraient représenter une cible potentielle de l’IL-1beta.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Induced pluripotent stem cells (iPSC) have the capacity to self renew and differentiate into a myriad of cell types making them potential candidates for cell therapy and regenerative medicine. The goal of this thesis was to determine the characteristics of equine iPSC (eiPSC) that can be harnessed for potential use in veterinary regenerative medicine. Trauma to a horse’s limb often leads to the development of a chronic non-healing wound that lacks a keratinocyte cover, vital to healing. Thus, the overall hypothesis of this thesis was that eiPSC might offer a solution for providing wound coverage for such problematic wounds. Prior to considering eiPSC for clinical applications, their immunogenicity must be studied to ensure that the transplanted cells will be accepted and integrate into host tissues. The first objective of this thesis was to determine the immune response to eiPSC. To investigate the immunogenicity of eiPSC, the expression of major histocompatibility complex (MHC) molecules by the selected lines was determined, then the cells were used in an intradermal transplantation model developed for this study. While transplantation of allogeneic, undifferentiated eiPSC elicited a moderate cellular response in experimental horses, it did not cause acute rejection. This strategy enabled the selection of weakly immunogenic eiPSC lines for subsequent differentiation into lineages of therapeutic importance. Equine iPSC offer a potential solution to deficient epithelial coverage by providing a keratinocyte graft with the ability to differentiate into other accessory structures of the epidermis. The second objective of this thesis was to develop a protocol for the differentiation of eiPSC into a keratinocyte lineage. The protocol was shown to be highly efficient at inducing the anticipated phenotype within 30 days. Indeed, the eiPSC derived vi keratinocytes (eiPSC-KC) showed both morphologic and functional characteristics of primary equine keratinocytes (PEK). Moreover, the proliferative capacity of eiPSC-KC was superior while the migratory capacity, measured as the ability to epithelialize in vitro wounds, was comparable to that of PEK, suggesting exciting potential for grafting onto in vivo wound models. In conclusion, equine iPSC-derived keratinocytes exhibit features that are promising to the development of a stem cell-based skin construct with the potential to fully regenerate lost or damaged skin in horses. However, since eiPSC do not fully escape immune surveillance despite low MHC expression, strategies to improve engraftment of iPSC derivatives must be pursued.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that the prion protein (PrP) is expressed on the surface of bone marrow cell populations enriched in long-term repopulating hematopoietic stem cells. Affinity purification of the PrP-positive and PrP-negative fractions from these populations, followed by competitive reconstitution assays, show that all long-term repopulating hematopoietic stem cells express PrP. Hematopoietic stem cells from PrP null bone marrow exhibit impaired self-renewal in serial competitive transplantation experiments, and premature exhaustion when exposed to cell cycle-specific myelotoxic injury. Therefore, PrP is a novel marker for hematopoietic stem cells and regulates their self-renewal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blood tissue is composed approximately in 45% by cells and its derivatives, with a life span of around 120 days for erythrocytes and 3 years for certain type of lymphocytes. This lost is compensated with the hematopoietic system activity and the presence of an immature primitive cell population known as Hematopoietic Stem Cells (HSCs) which perform the hematopoiesis, a process that is active from the beginning of the fetal life and produces near to 2 x 1011 eritrocytes and 1010 white blood cells per day (1). Hematopoietic Stem Cells are capable of both self-renewal and differentiation into multiple lineages, are located in a particular niche and are identified by their own cell surface markers, as the CD34 antigen. Recently it has been possible to advance in the understanding of self-renewal, differentiation and proliferation processes and in the involvement of the signaling pathways Hedgehog, Notch and Wnt. Studying the influence of these mechanisms on in vivo and in vitro behavior and the basic biology of HSCs, has given valuable tools for the generation of alternative therapies for hematologic disorders as leukemias.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This series of experiments attempted to characterize the abilities of stem cells derived from bone marrow and adipose tissue to integrate into the sensory epithelium of the inner ear and to differentiate into hair cells or neural cell types.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expression of the murine leukaemia virus (MLV) major Gag antigen p65(Gag) using the baculovirus expression system leads to efficient assembly and release of virus-like particles (VLP) representative of immature MLV. Expression of P180(Gag-Pol), facilitated normally in mammalian cells by readthrough of the p65(Gag) termination codon, also occurs efficiently in insect cells to provide a source of the MLV protease and a pattern of p65(Gag) processing similar to that observed in mammalian cells. VLP release from P180(Gag-Pol) expressing cells however remains essentially immature with disproportionate levels of the uncleaved p65(Gag) precursor when compared to the intracellular Gag profile. Changing the p65(Gag) termination codon altered the level of p65(Gag) and p180(Gag-Pol) within expressing cells but did not alter the pattern of released VLP, which remained immature. Coexpression of p65(Gag) with a fixed readthrough p180(Gag-Pol) also led to only immature VLP release despite high intracellular protease levels. Our data suggest a mechanism that preferentially selects uncleaved p65(Gag) for the assembly of MLV in this heterologous expression system and implies that, in addition to their relative levels, active sorting of the correct p65(Gag) and p180(Gag-Pol) ratios may occur in producer cells. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation. We show here that intermediate levels of protease activity in insect cells can be attained through site-directed mutagenesis of the protease and through antiprotease drug treatment. However, despite Gag cleavage patterns that mimicked those seen in mammalian cells, VLP synthesis exhibited an essentially all-or-none response in which VLP synthesis occurred but was immature or failed completely. Our data are consistent with a requirement for specific cellular factors in addition to the correct ratio of Gag and Gag-Pol for assembly of mature retrovirus particles in heterologous cell types. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective was to investigate the potential role of the oocyte in modulating proliferation and basal, FSH-induced and insulin-like growth factor (IGF)-induced secretion of inhibin A (inh A), activin A (act A), follistatin (FS), estradiol (E-2), and progesterone (P-4) by mural bovine granulosa cells. Cells from 4- to 6-mm follicles were cultured in serum-free medium containing insulin and androstenedione, and the effects of ovine FSH and IGF analogue (LR3-IGF-1) were tested alone and in the presence of denuded bovine oocytes (2, 8, or 20 per well). Medium was changed every 48 h, cultures were terminated after 144 h, and viable cell number was determined. Results are based on combined data from four independent cultures and are presented for the last time period only when responses were maximal. Both FSH and IGF increased (P < 0.001) secretion of inh A, act A, FS, E-2, and P-4 and raised cell number. In the absence of FSH or IGF, coculture with oocytes had no effect on any of the measured hormones, although cell number was increased up to 1.8-fold (P < 0.0001). Addition of oocytes to FSH-stimulated cells dose-dependently suppressed (P < 0.0001) inh A (6-fold maximum suppression), act A (5.5-fold), FS (3.6-fold), E-2 (4.6-fold), and P-4 (2.4-fold), with suppression increasing with FSH dose. Likewise, oocytes suppressed (P < 0.001) IGF-induced secretion of inh A, act A, FS, and E-2 (P < 0.05) but enhanced IGF-induced P-4 secretion (1.7-fold; P < 0.05). Given the similarity of these oocyte-mediated actions to those we observed previously following epidermal growth factor (EGF) treatment, we used immunocytochemistry to determine whether bovine oocytes express EGF or transforming growth factor (TGF) alpha. Intense staining with TGFalpha antibody (but not with EGF antibody) was detected in oocytes both before and after coculture. Experiments involving addition of TGFalpha to granulosa cells confirmed that the peptide mimicked the effects of oocytes on cell proliferation and on FSH- and IGF-induced hormone secretion. These experiments indicate that bovine oocytes secrete a factor(s) capable of modulating granulosa cell proliferation and responsiveness to FSH and IGF in terms of steroidogenesis and production of inhibin-related peptides, bovine oocytes express TGFalpha but not EGF, and TGFalpha is a prime candidate for mediating the actions of oocytes on bovine granulosa cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Limbal epithelial stem cells play a key role in the maintenance and regulation of the corneal surface. Damage or destruction of these cells results in vascularisation and corneal opacity. Subsequent limbal stem cell transplantation requires an ex vivo expansion step and preserving cells in an undifferentiated state remains vital. In this report we seek to control the phenotype of limbal epithelial stem cells by the novel application of compressed collagen substrates. We have characterised the mechanical and surface properties of conventional collagen gels using shear rheology and scanning electron microscopy. In doing so, we provide evidence to show that compressive load can improve the stiffness of collagen substrates. In addition Western blotting and immunohistochemistry display increased cytokeratin 3 (CK3) protein expression relating to limbal epithelial cell differentiation on stiff collagen substrates. Such gels with an elastic modulus of 2900 Pa supported a significantly higher number of cells than less stiff collagen gels (3 Pa). These findings have substantial influence in the development of ocular surface constructs or experimental models particularly in the fields of stem cell research, tissue engineering and regenerative medicine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A cardinal property of neural stem cells (NSCs) is their ability to adopt multiple fates upon differentiation. The epigenome is widely seen as a read-out of cellular potential and a manifestation of this can be seen in embryonic stem cells (ESCs), where promoters of many lineage-specific regulators are marked by a bivalent epigenetic signature comprising trimethylation of both lysine 4 and lysine 27 of histone H3 (H3K4me3 and H3K27me3, respectively). Bivalency has subsequently emerged as a powerful epigenetic indicator of stem cell potential. Here, we have interrogated the epigenome during differentiation of ESC-derived NSCs to immature GABAergic interneurons. We show that developmental transitions are accompanied by loss of bivalency at many promoters in line with their increasing developmental restriction from pluripotent ESC through multipotent NSC to committed GABAergic interneuron. At the NSC stage, the promoters of genes encoding many transcriptional regulators required for differentiation of multiple neuronal subtypes and neural crest appear to be bivalent, consistent with the broad developmental potential of NSCs. Upon differentiation to GABAergic neurons, all non-GABAergic promoters resolve to H3K27me3 monovalency, whereas GABAergic promoters resolve to H3K4me3 monovalency or retain bivalency. Importantly, many of these epigenetic changes occur before any corresponding changes in gene expression. Intriguingly, another group of gene promoters gain bivalency as NSCs differentiate toward neurons, the majority of which are associated with functions connected with maturation and establishment and maintenance of connectivity. These data show that bivalency provides a dynamic epigenetic signature of developmental potential in both NSCs and in early neurons. Stem Cells 2013;31:1868-1880.