881 resultados para SELF-DIRECTED GROWTH
Resumo:
This paper examines the role of knowledge capital in persistent regional productivity disparities in developing countries. The hypotheses are tested using regional and firm level longitudinal data from China. It is found that inequalities in knowledge creation and transfer, both inter-generational and international, played a significant role in increasing regional disparities in productivity. These inequalities are exacerbated by the accumulative nature of knowledge capital. All this leads to self-perpetuating cycles of success and failure, particularly compounded with asymmetric financial and human capital between different regions.
Resumo:
Using a comprehensive firm-level data set from China spanning the period 1998–2005, this study investigates the relationship between firm size, financing sources, and total factor productivity growth. Controlling for the endogeneity of financing sources, we find that firm size plays an important role in the way financial structure affects the growth process. Domestic bank loans are more effective for bigger firms, while self-raised finance is more beneficial to smaller firms’ growth. We also uncover evidence that ownership mediates the relationship between firm size, finance, and growth.
Resumo:
Using a comprehensive firm-level dataset spanning the period 1998-2005, this paper provides a thorough investigation of the relationship between firm size, total factor productivity growth and financial structure in China, controlling for the endogeneity of the latter. Generally, it finds financing source matters for firms of different size, and the extent to which financing source matters for firm growth is greater for small firms than big firms. Self-raised finance appears to be most effective in promoting small firms to grow, and bank loan seems to be more supportive to big firms. The relationship between size, finance and growth also depends on ownership. In addition, there exist strong complementarities between formal and informal finance, as well as between indigenous and foreign finance.
Resumo:
Abstract There is considerable evidence that high-growth firms (HGFs) contribute significantly to employment and economic growth. However, the literature so far does not adequately explore the link between HGFs and productivity. This paper investigates the empirical link between total factor productivity (TFP) growth and HGFs, defined in terms of sales growth, in the United Kingdom over the period 2001-2010, by examining two related research questions. Firstly, does higher TFP growth lead to HGF status and secondly, does HGF experience help firms achieve faster TFP growth? Our findings reveal that firms in both the manufacturing and services sectors are more likely to become HGFs when they exhibit higher TFP growth. In addition, firms that have had HGF experience tend to enjoy faster TFP growth following the high-growth episodes. Policy implications are drawn based on the self-reinforcing process of the high-growth phenomenon that is revealed by our results. © 2014 The Author(s).
Resumo:
Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H 2/CH 4, in which the flow ratio of CH 4 to H 2 (FCH4/FH2) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the pineapple-like morphology and the cauliflower-like morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH 4 to H 2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the pineapple-like films whilst there were ultrananocrystalline grains within cauliflower-like films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the cauliflower-like films whilst (100) crystalline plane was the dominant surface in the pineapple-like films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Motivated by the historically poor productivity performance of Northern Ireland firms and the longstanding productivity gap with the UK, the aim of this thesis is to examine, through the use of firm-level data, how exporting, innovation and public financial assistance impact on firm productivity growth. These particular activities are investigated due to the continued policy focus on their link to productivity growth and the theoretical claims of a direct positive relationship. In order to undertake these analyses a newly constructed dataset is used which links together cross-sectional and longitudinal data over the 1998-2008 period from the Annual Business Survey, the Manufacturing Sales and Export Survey; the Community Innovation Survey and Invest NI Selective Financial Assistance (SFA) payment data. Econometric methodologies are employed to estimate each of the relationships with regards to productivity growth, making use in particular of Heckman selection techniques and propensity score matching to take account of critical issues of endogeneity and selection bias. The results show that more productive firms self-select into exporting but there is no resulting productivity effect from starting to export; contesting the argument for learning-by-exporting. Product innovation is also found to have no impact on productivity growth over a four year period but there is evidence of a negative process innovation impact, likely to reflect temporary learning effects. Finally SFA assistance, including the amount of the payment, is found to have no short term impact on productivity growth suggesting substantial deadweight effects and/or targeting of inefficient firms. The results provide partial evidence as to why Northern Ireland has failed to narrow the productivity gap with the rest of the UK. The analyses further highlight the need for access to comprehensive firm-level data for research purposes, not least to underpin robust evidence-based policymaking.
Resumo:
Both light quantity and quality affect the development and autoecology of plants under shade conditions, as in the understorey of tropical forests. However, little research has been directed towards the relative contributions of lowered photosynthetic photon flux density (PPFD) versus altered spectral distributions (as indicated by quantum ratios of 660 to 730 nm, or R:FR) of radiation underneath vegetation canopies. A method for constructing shade enclosures to study the contribution of these two variables is described. Three tropical leguminous vine species (Abrus precatorius L., Caesalpinia bondicela Fleming and Mucuna pruriens (L.) DC.) were grown in two shade enclosures with 3-4% of solar PPFD with either the R:FR of sunlight (1.10) or foliage shade (0.33), and compared to plants grown in sunlight. Most species treated with low R:FR differed from those treated with high R:FR in (1) percent allocation to dry leaf weight, (2) internode length, (3) dry stem weight/length, (4) specific leaf weight, (5) leaf size, and (6) chlorophyll a/b ratios. However, these plants did not differ in chlorophyll content per leaf dry weight or area. In most cases the effects of low R:FR and PPFD were additional to those of high R:FR and low PPFD. Growth patterns varied among the three species, but both low PPFD and diminished R:FR were important cues in their developmental responses to light environments. This shadehouse system should be useful in studying the effects of light on the developmental ecology of other tropical forest plants.
Resumo:
Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in k cat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.
Resumo:
Background: Recent epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including cancers of the prostate. Over the past several years, our group has been studying how mycoplasmas could possibly initiate and propagate cancers of the prostate. Specifically, Mycoplasma hyorhinis encoded protein p37 was found to promote invasion of prostate cancer cells and cause changes in growth, morphology and gene expression of these cells to a more aggressive phenotype. Moreover, we found that chronic exposure of benign human prostate cells to M. hyorhinis resulted in significant phenotypic and karyotypic changes that ultimately resulted in the malignant transformation of the benign cells. In this study, we set out to investigate another potential link between mycoplasma and human prostate cancer. Methods: We report the incidence of men with prostate cancer and benign prostatic hyperplasia (BPH) being seropositive for M. hyorhinis. Antibodies to M. hyorhinis were surveyed by a novel indirect enzyme-linked immunosorbent assay (ELISA) in serum samples collected from men presenting to an outpatient Urology clinic for BPH (N = 105) or prostate cancer (N = 114) from 2006-2009. Results: A seropositive rate of 36% in men with BPH and 52% in men with prostate cancer was reported, thus leading us to speculate a possible connection between M. hyorhinis exposure with prostate cancer. Conclusions: These results further support a potential exacerbating role for mycoplasma in the development of prostate cancer.
Resumo:
The purpose of this study was to investigate the effects of cross-age peer writing response groups on the writing and reading achievement of third and fourth grade students. Students' attitudes about writing and their perceptions of themselves as writers were also measured at the end of the study. ^ One hundred and twenty-two third and fourth grade students enrolled in a public school in a middle-class, multi-cultural neighborhood participated in the study. Four existing classes of students were randomly assigned to either the experimental condition (EC) or the control condition (CC). Both groups were pretested and posttested for writing and reading achievement. The intervention, cross-age peer writing groups, met for eleven weeks. ^ Three hypotheses were examined in this study: (a) writing improvement score, (b) reading comprehension improvement score, and (c) students' attitudes toward writing and their perception of themselves as writers based on the five scales measured on the Writer Self-Perception Scale. ^ ANOVAs were done on the pretests and posttests for writing and the Stanford Achievement Test reading comprehension subtest scores for the year of the study and the previous year. ANOVAs were also done for the five areas of the Writer Self-Perception Scale. Cross-tabulations were also used to compare improvement level verses treatment group, and grade level. ^ Analysis of the data revealed that there was no evidence that the tutoring (EC) groups made more progress than the non-tutoring (CC) groups in writing and reading. There was evidence of growth in writing, especially by the fourth graders. Most importantly, the fourth grade tutors, the experimental group, had the most positive feelings about writing and themselves as writers. ^
Resumo:
Perception of self as a non-reader has been identified as one of the factors why poor readers disengage from the reading process (Strang, 1967; Rosow, 1992), thus impeding progress. Perception and informational processes influence judgments of personal efficacy (Bandura, 1997). The student's sense of reading efficacy that influence effort expenditure and ultimately achievement, is often overlooked (Athey, 1985; Pajares, 1996). Academic routines within educational programs are implemented without adequate information on whether routines promote or impede efficacy growth. Cross-age tutoring, a process known to improve participants' academic achievement, motivation, and provide opportunities for authentic reading practice, has been successfully incorporated into reading instruction designs (Allen, 1976; Cohen, Kulik & Kulik, 1982; Labbo & Teale, 1990; Riessman, 1993). This study investigated the impact teacher-designed routines within a cross-age tutoring model, have on the tutor's sense of reading self-efficacy. ^ The Reader Self-Perception Scale (Henk & Melnick, 1992) was administered, pre- and post-treatment, to 118 fifth grade students. Preceding the initial survey administration intact classes were randomly assigned to 1 of 3 commonly utilized cross-age tutoring routines or designated as the non-treatment population. The data derived from the Reader Self-Perception Scale was analyzed using an analysis of covariance (ANCOVA). Results indicated that participation as a cross-age tutor does not significantly increase the tutor's perception of self as reader in 1 or more of the 4 modes of information influencing self-efficacy as compared to the non-treatment group. ^ The results of this study suggests that although a weekly tutoring session that delivers educationally credible routines impacts achievement and motivation, efficacy effect was not evident. Possible explanation and recommendations for future studies are proposed. ^
Resumo:
Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.
By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.
To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.
In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.
Resumo:
We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.
Resumo:
The market for luxury brands has outpaced other consumption categories through its growth, and has been found in continuous development. As there is an increasing amount of luxury categories, the consumption of luxury fashion brands account for the largest proportion of luxury profits, and the marketing costs for such brands has shown to surpass those of other fashion categories. Consumer researchers have throughout decades emphasized how individuals participate in consumption behavior to form their self-concept in relation to brands. However, previous research has disregarded the multidimensional perspective regarding the theory of self-concept when examining the consumption of brands. Hence, the current research paper aims to strengthen the existing self-concept theory by exploring the role in which luxury fashion brands have by focusing on how the consumption of such brands relate, and contribute, to the consumer’s self-concept. By applying a qualitative method to investigate such purpose, and involving the existing theory of self-concept, brand image, and brand personality, it appeared that luxury fashion brands has a function to operate as a confidence booster for young consumers’ perception of their self-concept. In terms of the theoretical contribution of this paper, this research further illustrates how the theoretical explanation of brand image and brand personality relates to two different dimensions of the consumer’s self-concept. The consumption of luxury fashion brands has shown a significant role in individuals’ consumption behavior by emphasizing a striving, and motivating, part in the self-concept of young consumers.
Resumo:
Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths. We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process. We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.