997 resultados para Running Efficiency
Resumo:
以9.7MeV/u的238U36+,5.62MeV/u的70Zn10+为典型离子,分析并模拟了分离扇回旋加速器(SSC)的注入、加速和引出,得到了SSC在理论等时场下横向和纵向的接受度。为了研究SSC在实际情况下的接受度,在实测场的基础上采用Kr-Kb方法以及Lagrange插值方法建立了与实际比较符合的等时场,计算了该等时场下SSC横向和纵向的接受度,发现了导致SSC实际接受度和传输效率低的主要原因在于注入系统中的MSI3元件和引出系统中的MSE3元件设计存在缺陷。模拟结果显示,通过改变MSI3和MSE3的曲率或者垫铁改变元件内部的场分布可以改善SSC的实际接受度和传输效率。
Resumo:
We investigate the effect of clusters in complex networks on efficiency dynamics by studying a simple efficiency model in two coupled small-world networks. It is shown that the critical network randomness corresponding to transition from a stagnant phase to a growing one decreases to zero as the connection strength of clusters increases. It is also shown for fixed randomness that the state of clusters transits from a stagnant phase to a growing one as the connection strength of clusters increases. This work can be useful for understanding the critical transition appearing in many dynamic processes on the cluster networks.
Resumo:
The simple efficiency model is developed on scale-free networks with communities to study the effect of the communities in complex networks on efficiency dynamics. For some parameters, we found that the state of system will transit from a stagnant phase to a growing phase as the strength of community decreases.
Resumo:
A novel protocol has been established to separate dsDNA fragments with high efficiency on glass chips by using an ultralow viscosity sieving matrix with added glucose. Low-molecular-weight hydroxypropylmethylcellulose (HPMC), with a viscosity nearly equivalent to that of water, was used to electrophoretically separate fluorescent inter-calator-labeled double-stranded DNA (dsDNA) fragments on microfluidic glass chips. In comparison with conventional sieving protocols, low-molecular-weight HPMC as sieving matrix could result in reduced running cost and analysis time, in addition to a comparable separation efficiency of dsDNA fragments. In this paper, the addition of glucose was investigated to enhance the separation of DNA in the lowest viscosity polymer evaluated. The effect of staining dye and field strength were also evaluated. At an applied electric field strength of 200 V/cm, satisfactory resolution of the PBR322/HaeIII DNA marker could be achieved within 4 min by using 2% HPMC-5 with 6% glucose added. Coelectrophoresing PCR product along with phiX174/HaeIII DNA sizing marker was also demonstrated by using the ultralow viscosity HPMC-5 solution on a glass chip.
Resumo:
National Natural Science Foundation of China [30590381, 40971027]; State Key Technologies RD Program [2006BAC08]; Chinese Academy of Sciences ; National Key Research and Development Program [2010CB833501]