791 resultados para Rule-Based Classification
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Scoliosis treatment strategy is generally chosen according to the severity and type of the spinal curve. Currently, the curve type is determined from X-rays whose acquisition can be harmful for the patient. We propose in this paper a system that can predict the scoliosis curve type based on the analysis of the surface of the trunk. The latter is acquired and reconstructed in 3D using a non invasive multi-head digitizing system. The deformity is described by the back surface rotation, measured on several cross-sections of the trunk. A classifier composed of three support vector machines was trained and tested using the data of 97 patients with scoliosis. A prediction rate of 72.2% was obtained, showing that the use of the trunk surface for a high-level scoliosis classification is feasible and promising.
Resumo:
Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.
Resumo:
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech
Resumo:
Suffix separation plays a vital role in improving the quality of training in the Statistical Machine Translation from English into Malayalam. The morphological richness and the agglutinative nature of Malayalam make it necessary to retrieve the root word from its inflected form in the training process. The suffix separation process accomplishes this task by scrutinizing the Malayalam words and by applying sandhi rules. In this paper, various handcrafted rules designed for the suffix separation process in the English Malayalam SMT are presented. A classification of these rules is done based on the Malayalam syllable preceding the suffix in the inflected form of the word (check_letter). The suffixes beginning with the vowel sounds like ആല, ഉെെ, ഇല etc are mainly considered in this process. By examining the check_letter in a word, the suffix separation rules can be directly applied to extract the root words. The quick look up table provided in this paper can be used as a guideline in implementing suffix separation in Malayalam language
Resumo:
Optical Character Recognition plays an important role in Digital Image Processing and Pattern Recognition. Even though ambient study had been performed on foreign languages like Chinese and Japanese, effort on Indian script is still immature. OCR in Malayalam language is more complex as it is enriched with largest number of characters among all Indian languages. The challenge of recognition of characters is even high in handwritten domain, due to the varying writing style of each individual. In this paper we propose a system for recognition of offline handwritten Malayalam vowels. The proposed method uses Chain code and Image Centroid for the purpose of extracting features and a two layer feed forward network with scaled conjugate gradient for classification
Resumo:
The characterization and grading of glioma tumors, via image derived features, for diagnosis, prognosis, and treatment response has been an active research area in medical image computing. This paper presents a novel method for automatic detection and classification of glioma from conventional T2 weighted MR images. Automatic detection of the tumor was established using newly developed method called Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA).Statistical Features were extracted from the detected tumor texture using first order statistics and gray level co-occurrence matrix (GLCM) based second order statistical methods. Statistical significance of the features was determined by t-test and its corresponding p-value. A decision system was developed for the grade detection of glioma using these selected features and its p-value. The detection performance of the decision system was validated using the receiver operating characteristic (ROC) curve. The diagnosis and grading of glioma using this non-invasive method can contribute promising results in medical image computing
Resumo:
Mit der Verwirklichung ,Ökologischer Netzwerke‘ werden Hoffnungen zum Stopp des Verlustes der biologischen Vielfalt verknüpft. Sowohl auf gesamteuropäischer Ebene (Pan-European Ecological Network - PEEN) als auch in den einzelnen Staaten entstehen Pläne zum Aufbau von Verbundsystemen. Im föderalen Deutschland werden kleinmaßstäbliche Biotopverbundplanungen auf Landesebene aufgestellt; zum nationalen Biotopverbund bestehen erste Konzepte. Die vorliegende Arbeit ist auf diese überörtlichen, strategisch vorbereitenden Planungsebenen ausgerichtet. Ziele des Verbunds sind der Erhalt von Populationen insbesondere der gefährdeten Arten sowie die Ermöglichung von Ausbreitung und Wanderung. Aufgrund fehlender Datengrundlagen zu den Arten und Populationen ist es nicht ohne weiteres möglich, die Konzepte und Modelle der Populationsökologie in die überörtlichen Planungsebenen zu übertragen. Gemäß der o.g. Zielstellungen sollte sich aber die Planung von Verbundsystemen an den Ansprüchen der auf Verbund angewiesenen Arten orientieren. Ziel der Arbeit war die Entwicklung einer praktikablen GIS-gestützten Planungshilfe zur größtmöglichen Integration ökologischen Wissens unter der Bedingung eingeschränkter Informationsverfügbarkeit. Als Grundlagen dazu werden in Übersichtsform zunächst die globalen, europäisch-internationalen und nationalen Rahmenbedingungen und Anforderungen bezüglich des Aufbaus von Verbundsystemen zusammengestellt. Hier sind die Strategien zum PEEN hervorzuheben, die eine Integration ökologischer Inhalte insbesondere durch die Berücksichtigung räumlich-funktionaler Beziehungen fordern. Eine umfassende Analyse der landesweiten Biotopverbundplanungen der BRD zeigte die teilweise erheblichen Unterschiede zwischen den Länderplanungen auf, die es aktuell nicht ermöglichen, ein schlüssiges nationales Konzept zusammenzufügen. Nicht alle Länder haben landesweite Biotopverbundplanungen und Landeskonzepte, bei denen dem geplanten Verbund die Ansprüche von Arten zugrunde gelegt werden, gibt es nur ansatzweise. Weiterhin wurde eine zielgerichtete Eignungsprüfung bestehender GIS-basierter Modelle und Konzepte zum Verbund unter Berücksichtigung der regelmäßig in Deutschland verfügbaren Datengrundlagen durchgeführt. Da keine integrativen regelorientierten Ansätze vorhanden waren, wurde der vektorbasierte Algorithmus HABITAT-NET entwickelt. Er arbeitet mit ,Anspruchstypen‘ hinsichtlich des Habitatverbunds, die stellvertretend für unterschiedliche ökologische Gruppen von (Ziel-) Arten mit terrestrischer Ausbreitung stehen. Kombiniert wird die Fähigkeit zur Ausbreitung mit einer Grobtypisierung der Biotopbindung. Die wichtigsten Grundlagendaten bilden die jeweiligen (potenziellen) Habitate von Arten eines Anspruchstyps sowie die umgebende Landnutzung. Bei der Bildung von ,Lebensraumnetzwerken‘ (Teil I) werden gestufte ,Funktions- und Verbindungsräume‘ generiert, die zu einem räumlichen System verknüpft sind. Anschließend kann die aktuelle Zerschneidung der Netzwerke durch Verkehrstrassen aufgezeigt werden, um darauf aufbauend prioritäre Abschnitte zur Wiedervernetzung zu ermitteln (Teil II). Begleitend wird das Konzept der unzerschnittenen Funktionsräume (UFR) entworfen, mit dem die Indikation von Habitatzerschneidung auf Landschaftsebene möglich ist. Diskutiert werden schließlich die Eignung der Ergebnisse als kleinmaßstäblicher Zielrahmen, Tests zur Validierung, Vergleiche mit Verbundplanungen und verschiedene Setzungen im GIS-Algorithmus. Erläuterungen zu den Einsatzmöglichkeiten erfolgen beispielsweise für die Bereiche Biotopverbund- und Landschaftsplanung, Raumordnung, Strategische Umweltprüfung, Verkehrswegeplanung, Unterstützung des Konzeptes der Lebensraumkorridore, Kohärenz im Schutzgebietssystem NATURA 2000 und Aufbau von Umweltinformationssystemen. Schließlich wird ein Rück- und Ausblick mit der Formulierung des weiteren Forschungsbedarfs verknüpft.
Resumo:
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Resumo:
Association rules are a popular knowledge discovery technique for warehouse basket analysis. They indicate which items of the warehouse are frequently bought together. The problem of association rule mining has first been stated in 1993. Five years later, several research groups discovered that this problem has a strong connection to Formal Concept Analysis (FCA). In this survey, we will first introduce some basic ideas of this connection along a specific algorithm, TITANIC, and show how FCA helps in reducing the number of resulting rules without loss of information, before giving a general overview over the history and state of the art of applying FCA for association rule mining.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Machine translation has been a particularly difficult problem in the area of Natural Language Processing for over two decades. Early approaches to translation failed since interaction effects of complex phenomena in part made translation appear to be unmanageable. Later approaches to the problem have succeeded (although only bilingually), but are based on many language-specific rules of a context-free nature. This report presents an alternative approach to natural language translation that relies on principle-based descriptions of grammar rather than rule-oriented descriptions. The model that has been constructed is based on abstract principles as developed by Chomsky (1981) and several other researchers working within the "Government and Binding" (GB) framework. Thus, the grammar is viewed as a modular system of principles rather than a large set of ad hoc language-specific rules.
Resumo:
There are numerous text documents available in electronic form. More and more are becoming available every day. Such documents represent a massive amount of information that is easily accessible. Seeking value in this huge collection requires organization; much of the work of organizing documents can be automated through text classification. The accuracy and our understanding of such systems greatly influences their usefulness. In this paper, we seek 1) to advance the understanding of commonly used text classification techniques, and 2) through that understanding, improve the tools that are available for text classification. We begin by clarifying the assumptions made in the derivation of Naive Bayes, noting basic properties and proposing ways for its extension and improvement. Next, we investigate the quality of Naive Bayes parameter estimates and their impact on classification. Our analysis leads to a theorem which gives an explanation for the improvements that can be found in multiclass classification with Naive Bayes using Error-Correcting Output Codes. We use experimental evidence on two commonly-used data sets to exhibit an application of the theorem. Finally, we show fundamental flaws in a commonly-used feature selection algorithm and develop a statistics-based framework for text feature selection. Greater understanding of Naive Bayes and the properties of text allows us to make better use of it in text classification.
Resumo:
This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distributions, are applied to these image features to create a suite of gait sequence representations. Despite their simplicity, the resulting feature vectors contain enough information to perform well on human identification and gender classification tasks. We demonstrate the accuracy of recognition on gait video sequences collected over different days and times and under varying lighting environments. Each of the integration methods are investigated for their advantages and disadvantages. An improved gait representation is built based on our experiences with the initial set of gait representations. In addition, we show gender classification results using our gait appearance features, the effect of our heuristic feature selection method, and the significance of individual features.
Resumo:
This paper describes a trainable system capable of tracking faces and facialsfeatures like eyes and nostrils and estimating basic mouth features such as sdegrees of openness and smile in real time. In developing this system, we have addressed the twin issues of image representation and algorithms for learning. We have used the invariance properties of image representations based on Haar wavelets to robustly capture various facial features. Similarly, unlike previous approaches this system is entirely trained using examples and does not rely on a priori (hand-crafted) models of facial features based on optical flow or facial musculature. The system works in several stages that begin with face detection, followed by localization of facial features and estimation of mouth parameters. Each of these stages is formulated as a problem in supervised learning from examples. We apply the new and robust technique of support vector machines (SVM) for classification in the stage of skin segmentation, face detection and eye detection. Estimation of mouth parameters is modeled as a regression from a sparse subset of coefficients (basis functions) of an overcomplete dictionary of Haar wavelets.