993 resultados para Rododhendron simsii and Phaseolus vulgaris L.
Resumo:
Twenty microsatelitte loci were identified and characterized in common bean. Microsatellites were tested in 14 genotypes. The allele number ranged from 1 to 3, and the polymorphism information content (PIC) was between 0.14 and 0.65. These polymorphic markers are available to be used for breeding programs.
Resumo:
The objective of this work was to determine the combining ability and heterosis, for productivity and yield components, in diallel hybrids derived from crossings between BRSMG-Talismã, IPR Uirapuru, FT Soberano, BRS Campeiro, IAC Tybatã, and IPR Juriti parent cultivars. Fifteen hybrids were generated from diallel crosses, excluding reciprocals. The general and specific combining abilities were significant for plant height, number of pods per plant, number of seeds per plant, number of seeds per pod, 50-seed weight, and grain yield, indicating the occurrence of both additive and nonadditive genetic effects. The best strategy to be adopted is the use of BRS Campeiro, FT Soberano and BRSMG-Talismã cultivars in common bean breeding programs involving selection. The most promising combinations were 'IPR Uirapuru' x 'IAC Tybatã', 'IPR Uirapuru' x 'FT Soberano', 'BRS Campeiro' x 'IPR Juriti', and 'BRS Campeiro' x 'IAC Tybatã'. The parents of these hybrids presented high estimates of specific combining abilities. Hybridization of cultivars belonging to distinguished commercial groups propitiates higher heterosis values in the segregant population.
Resumo:
This study aimed to genetically characterize four new Rhizobium strains, and to evaluate their nodulation and fixation capacity compared to commercial strains and to native rhizobia population of a Brazilian Rhodic Hapludox. Two experiments were carried out in randomized blocks design, under greenhouse conditions, in 2007. In the first experiment, the nodulation and nitrogen fixation capacity of new strains were evaluated, in comparison to the commercial strains CIAT-899 and PRF-81 and to native soil population. It was carried out in plastic tubes filled with vermiculite. DNA extractions and PCR sequencing of the intergenic space were made from the isolated pure colonies, in order to genetically characterize the strains and the native rhizobia population. In the second experiment, the nodulation and productivity of common beans Perola cultivar were determined, with the use of evaluated strains, alone or in mixture with PRF-81 strain. It was carried out in pots filled with soil. The native soil population was identified as Rhizobium sp. and was inefficient in nitrogen fixation. Three different Rhizobium species were found among the four new strains. The LBMP-4BR and LBMP-12BR new strains are among the ones with greatest nodulation and fixation capacity and exhibit differential responses when mixed to PRF-81.
Resumo:
The objective of this work was to evaluate the potential of an artificial mixture of volatile organic compounds (VOCs), produced by Saccharomyces cerevisiae, to control Sclerotinia sclerotiorum in vitro and in bean seeds. The phytopathogenic fungus was exposed, in polystyrene plates, to an artificial atmosphere containing a mixture of six VOCs formed by alcohols (ethanol, 3-methyl-1-butanol, 2-methyl-1-butanol and phenylethyl alcohol) and esters (ethyl acetate and ethyl octanoate), in the proportions found in the atmosphere naturally produced by yeast. Bean seeds artificially contamined with the pathogen were fumigated with the mixture of VOCs in sealed glass flasks for four and seven days. In the in vitro assays, the compounds 2-methyl-1-butanol and 3-methyl-1-butanol were the most active against S. sclerotiorum, completely inhibiting its mycelial growth at 0.8 µL mL-1, followed by the ethyl acetate, at 1.2 µL mL-1. Bean seeds fumigated with the VOCs at 3.5 µL mL-1 showed a 75% reduction in S. sclerotiorum incidence after four days of fumigation. The VOCs produced by S. cerevisiae have potential to control the pathogen in stored seeds.
Resumo:
The objective of this work was to evaluate isolates of Trichoderma harzianum regarding biocontrol of common bean seed-borne pathogens, plant growth promotion, and rhizosphere competence. Five isolates of T. harzianum were evaluated and compared with commercial isolate (Ecotrich), Carboxin+Thiram, and an absolute control. Bean seeds of the cultivar Jalo Precoce, contaminated with Aspergillus, Cladosporium, and Sclerotinia sclerotiorum, were microbiolized with antagonists, and seed health tests were carried out. Isolates were evaluated on autoclaved substrate and in field conditions. Ten days after sowing (DAS), plant length was measured. To test rhizosphere competence, isolates were applied in boxes containing autoclaved washed sand, and root colonization was evaluated at 10 DAS, using five plants per box. The most effective isolates in the seed health tests were: CEN287 and CEN289 to control Aspergillus; the commercial isolate to control Cladosporium; and CEN287 and CEN316 to control S. sclerotiorum. Isolates CEN289 and CEN290 promoted bean growth in greenhouse and field. Seed treatment with T. harzianum reduces the incidence of Aspergillus, Cladosporium, and S. sclerotiorum in 'Jalo Precoce' common bean seeds.
Resumo:
The objective of this work was to evaluate the effects of preceding crops and tillage systems on the incidence of Fusarium wilt (Fusarium oxysporum f. sp. phaseoli) and common bean (Phaseolus vulgaris) yield. The cultivar BRS Valente was cultivated under center‑pivot irrigation in the winter seasons of 2003, 2004 and 2005, after several preceding crops established in the summer seasons. Preceding crops included the legumes Cajanus cajan (pigeon pea), Stylosanthes guianensis, and Crotalaria spectabilis; the grasses Pennisetum glaucum (millet), Sorghum bicolor (forage sorghum), Panicum maximum, and Urochloa brizantha; and a consortium of maize (Zea mays) and U. brizantha (Santa Fé system). Experiments followed a strip‑plot design, with four replicates. Fusarium wilt incidence was higher in the no‑tillage system. Higher disease incidences corresponded to lower bean yields in 2003 and 2004. Previous summer cropping with U. brizantha, U. brizantha + maize consortium, and millet showed the lowest disease incidence. Therefore, the choice of preceding crops must be taken into account for managing Fusarium wilt on irrigated common bean crops in the Brazilian Cerrado.
Resumo:
The objective of this work was to measure the fluxes of N2O‑N and NH3‑N throughout the growing season of irrigated common‑bean (Phaseolus vulgaris), as affected by mulching and mineral fertilization. Fluxes of N2O‑N and NH3‑N were evaluated in areas with or without Congo signal grass mulching (Urochloa ruziziensis) or mineral fertilization. Fluxes of N were also measured in a native Cerrado area, which served as reference. Total N2O‑N and NH3‑N emissions were positively related to the increasing concentrations of moisture, ammonium, and nitrate in the crop system, within 0.5 m soil depth. Carbon content in the substrate and microbial biomass within 0.1 m soil depth were favoured by Congo signal grass and related to higher emissions of N2O‑N, regardless of N fertilization. Emission factors (N losses from the applied mineral nitrogen) for N2O‑N (0.01-0.02%) and NH3‑N (0.3-0.6%) were lower than the default value recognized by the Intergovernmental Panel on Climate Change. Mulch of Congo signal grass benefits N2O‑N emission regardless of N fertilization.
Resumo:
The objective of this work was to estimate the repeatability of adaptability and stability parameters of common bean between years, within each biennium from 2003 to 2012, in Minas Gerais state, Brazil. Grain yield data from trials of value for cultivation and use common bean were analyzed. Grain yield, ecovalence, regression coefficient, and coefficient of determination were estimated considering location and sowing season per year, within each biennium. Subsequently, a analysis of variance these estimates was carried out, and repeatability was estimated in the biennia. Repeatability estimate for grain yield in most of the biennia was relatively high, but for ecovalence and regression coefficient it was null or of small magnitude, which indicates that confidence on identification of common bean lines for recommendation is greater when using means of yield, instead of stability parameters.
Resumo:
The objective of this work was to evaluate the genetic variability of common bean lines for cycle, weight of 100 grains, grain yield, cooking time, and grain calcium and iron concentrations. Twenty-four common bean lines were evaluated in two crop cycles (2010 and 2011). The ¯Z index was used for the selection of superior lines for most of the traits. The DF 06-19, DF 06-03, DF 06-17, DF 06-20, DF 06-11, DF 06-14, DF 06-01, DF 06-08, DF 06-22, and DF 06-04 lines showed high grain yield. All lines were of semi-early cycle and of fast cooking. The DF 06-08 and DF 06-23 lines showed high calcium concentration in grains (>1.4 g kg-1 dry matter - DM), and the DF 06-09, DF 06-03, DF 06-04, and DF 06-06 lines presented high iron concentration in grains (>0.95 g kg-1 DM) in the two crop cycles. The DF 06-09 and DF 06-03 carioca lines present high agronomic performance and high iron concentration in grains. The DF 06-17 and DF 06-08 black lines present high agronomic performance and high calcium concentration in grains. The selection of the DF 06-09, DF 06-03, DF 06-17, and DF 06-08 lines is recommended.
Resumo:
The objective of this work was to determine the efficiency of the Papadakis method on the quality evaluation of experiments with multiple-harvest oleraceous crops, and on the estimate of the covariate and the ideal plot size. Data from nine uniformity trials (five with bean pod, two with zucchini, and two with sweet pepper) and from one experiment with treatments (with sweet pepper) were used. Through the uniformity trials, the best way to calculate the covariate was defined and the optimal plot size was calculated. In the experiment with treatments, analyses of variance and covariance were performed, in which the covariate was calculated by the Papadakis method, and experimental precision was evaluated based on four statistics. The use of analysis of covariance with the covariate obtained by the Papadakis method increases the quality of experiments with multiple-harvest oleraceous crops and allows the use of smaller plot sizes. The best covariate is the one that considers a neighboring plot of each side of the reference plot.
Resumo:
The objective of this work was to evaluate the main differences in the genetic control of the iron concentration in Mesoamerican and Andean common bean seeds, in early generations, and to select recombinants with a high iron concentration in the seeds. F1, F1 reciprocal, F2, F2 reciprocal, and backcross (BC11 and BC12) generations were produced by crosses between Mesoamerican (CNFP 10104 x CHC 01-175) and Andean (Cal 96 x Hooter) inbred lines. The expression of significant maternal effect was observed for the Mesoamerican gene pool. Iron concentration was higher in the seed coat of Mesoamerican common bean seeds (54.61 to 67.92%) and in the embryo of Andean common bean seeds (69.40 to 73.44%). High broad-sense heritability was obtained for iron concentration in Mesoamerican and Andean common bean seeds. Gains with the selection of higher magnitude, from 20.39 to 24.58%, are expected in Mesoamerican common bean seeds. Iron concentration in common bean seeds showed a continuous distribution in F2, which is characteristic of quantitative inheritance in Mesoamerican and Andean common bean seeds. Recombinants with high iron concentration in seeds can be selected in both Mesoamerican and Andean common bean hybrids.
Resumo:
The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is a non-proteinogenic amino acid which is toxic for prokaryotes and eukaryotes. Production of AMB requires a five-gene cluster encoding a putative LysE-type transporter (AmbA), two non-ribosomal peptide synthetases (AmbB and AmbE), and two iron(II)/α-ketoglutarate-dependent oxygenases (AmbC and AmbD). Bioinformatics analysis predicts one thiolation (T) domain for AmbB and two T domains (T1 and T2) for AmbE, suggesting that AMB is generated by a processing step from a precursor tripeptide assembled on a thiotemplate. Using a combination of ATP-PPi exchange assays, aminoacylation assays, and mass spectrometry-based analysis of enzyme-bound substrates and pathway intermediates, the AmbB substrate was identified to be L-alanine (L-Ala), while the T1 and T2 domains of AmbE were loaded with L-glutamate (L-Glu) and L-Ala, respectively. Loading of L-Ala at T2 of AmbE occurred only in the presence of AmbB, indicative of a trans loading mechanism. In vitro assays performed with AmbB and AmbE revealed the dipeptide L-Glu-L-Ala at T1 and the tripeptide L-Ala-L-Glu-L-Ala attached at T2. When AmbC and AmbD were included in the assay, these peptides were no longer detected. Instead, an L-Ala-AMB-L-Ala tripeptide was found at T2. These data are in agreement with a biosynthetic model in which L-Glu is converted into AMB by the action of AmbC, AmbD, and tailoring domains of AmbE. The importance of the flanking L-Ala residues in the precursor tripeptide is discussed.
Resumo:
This work was aimed at evaluating the possibility of using bromophenol blue as an indicator for detecting the presence of Sclerotinia sclerotiorum in the seeds of dry-beans (Phaseolus vulgaris) and soybean (Glycine max), through incubation of the seeds on an agar medium and "blotter" substrates. The seeds were artificially inoculated with four S. sclerotiorum isolates, plated on the agar medium, named Neon, and on modified Neon agar media all incubated at 14 and 20 ºC for seven days in the dark. Half of the seeds inoculated were surface desinfested prior to plating on the medium. The seeds showing change of colour in the medium, from blue to light yellow, as well as formation of typical mycelium and sclerotia in some cases, were considered to be infected or contaminated by S. sclerotiorum. The two incubation temperatures compared did not show significant (P<0.05) differences in detection level for most of the isolates tested on the different media. According to results obtained in this study, the Neon agar medium with incubation at 14 or 20 ºC has proved to be a reliable and quick method for the detection of S. sclerotiorum mycelium in naturally infected seeds of bean and soybean.
Resumo:
Sclerotinia sclerotiorum, the causal agent of white mold, is a problem of winter bean (Phaseolus vulgaris) production in Brazil under center-pivot irrigation. Isolates of S. sclerotiorum were obtained from a center-pivot-irrigated field near Guaíra-SP, Brazil. Mycelial compatibility group (MCG) studies revealed the presence of only two MCG. PCR/RFLP analysis of the ITS1-5.8S-ITS2 ribosomal subunit regions of these field isolates of S. sclerotiorum failed to show any genetic differences between these two MCGs. DNA amplification with a chromosomal telomere sequence-based primer and one microsatellite primer revealed genetic polymorphisms among isolates within the same MCG. Isolates taken from beans and two other crops from another region of Brazil showed the same two MCG and had identical banding patterns for the telomere and microsatellite primers. These findings support the use of telomere sequence-based primers for revealing genotypic differences among S. sclerotiorum isolates.
Resumo:
Genetic divergence within and among races of Colletotrichum lindemuthianum was determined using RAPD markers. In addition to the different races of the fungus three isolates of the sexual stage of Colletotrichum lindemuthianum (Glomerella cingulata f.sp. phaseoli) were included in this study. The band patterns generated using 11 primers produced 133 polymorphic bands. The polymorphic bands were used to determine genetic divergence among and within the pathogen races. The isolates analyzed were divided into six groups with 0.75 relative similarity. Group VI, formed by three isolates of the sexual phase of Colletotrichum lindemuthianum, was the most divergent. Races previously determined using differential cultivars did not correlate with the results obtained using RAPD markers.