999 resultados para Road materials.
Resumo:
Interstate 380 (I-380) through Cedar Rapids and Hiawatha, Iowa, is a multilane divided urban freeway that was constructed in 1976 to the Cedar River and in 1981 from that point northerly. Traffic volumes vary from 47,000 to 83,500 vehicles per day, with about 8%–15% trucks and buses. Based on concern for the high number of crash incidents, particularly serious crashes, and increased traffic volumes on this roadway, the City of Cedar Rapids and the Iowa Department of Transportation (Iowa DOT) District 6 Office requested that a road safety audit be conducted for this roadway section. Representatives from the Iowa DOT, Federal Highway Administration, Center for Transportation Research and Education, local law enforcement, local government, and area businesses met to review crash data and discuss potential safety improvements to this segment of I-380. This report outlines the findings and recommendations of the road safety audit team for addressing the safety concerns on this I-380 corridor and explains several selected mitigation strategies.
Resumo:
Jefferson County Road H-46 from Redwood Avenue to the southeast corporate limits (SCL) of Fairfield, Iowa, is a paved roadway approximately 6.5 miles long made of asphaltic concrete pavement with curvilinear alignment. The roadway consists of a 22 ft wide pavement, last overlaid in 2002, with 3 to 4 ft wide earth shoulders. Traffic estimates indicated volumes ranging from 500 to 1,590 vehicles per day, with numbers increasing as the route nears Fairfield. This roadway was found to be among the highest 5 percent of similar Iowa roadways in terms of severity of run-off-road crashes. In response, Iowa Department of Transportation (Iowa DOT) requested a road safety audit to examine the roadway and suggest possible mitigation. Representatives from the Iowa DOT, Federal Highway Administration, Institute for Transportation, local law enforcement, and local government met to review crash data and discuss potential safety improvements to this segment H-46. This report outlines the findings and recommendations of the road safety audit team for addressing the safety concerns on this roadway.
Resumo:
On October 20–21, 2009, two road safety audits were conducted in Lee County, Iowa: one for a 6 mile section of County Road X-23 from IA 2 to the south corporate limits of West Point and one for a 9.7 mile section of County Road W-62 from US 218 to IA 27. Both roads have high severe crash histories for the years of 2001 through 2008. Using these crash data, the Iowa Department of Transportation (Iowa DOT) has identified County Road X-23 as being in the top 5 percent of similar roads for run-off-road crashes. The Iowa DOT lists County Road W-62 as a high-risk rural road that has above-average crash numbers and is eligible for funding under the Federal High-Risk Rural Road Program. Considering these issues, the Lee County Engineer and Iowa DOT requested that road safety audits be conducted to address the safety concerns and to suggest possible mitigation strategies.
Resumo:
US 151 was originally constructed as IA 149 in 1931-1934 and has been rehabilitated several times. The most recent major improvements, which were completed in 2005-2006, consisted of hot mix asphalt resurfacing and partial shoulder paving. Major widening and resurfacing improvements were also completed in 2007 between Fairfax and US 30 in Cedar Rapids. According to a preliminary 2009 estimate, traffic volumes range from about 5,900 vehicles per day (vpd) north of Amana to about 14,400 vpd at the US 30 interchange in Cedar Rapids. In response to high crash densities and medium to medium-high crash rates along the route, the Iowa Department of Transportation (Iowa DOT) requested a road safety audit to examine the roadway and suggest possible mitigation. Representatives from the Iowa DOT, Federal Highway Administration, Institute for Transportation, local law enforcement, and state government met to review crash data and discuss potential safety improvements to this segment of US 151. This report outlines the findings and recommendations of the road safety audit team for addressing the safety concerns on this roadway.
Resumo:
To address safety concerns on James Avenue NW and 250th Street NW, from the North Corporate Limits (NCL) of Tiffin, north and east to I-380 (at North Liberty), the Johnson County engineer requested a road safety audit (RSA). The audit was conducted on September 1, 2010, through a program supported by the Office of Traffic and Safety at the Iowa Department of Transportation (DOT). This road is a seal-coated roadway, about 25-ft wide, but with only about 0-1 ft of earth shoulders. According to 2006 Iowa DOT estimates, traffic volume is about 820 vehicles per day, north from Tiffin to a commercial entrance on 250th Street, then increasing to 2,990 vehicles per day to the on-ramp of Interstate 380 (I-380). Local traffic uses this road as a short-cut to Cedar Rapids, North Liberty, and the I-380/I-80 interchange (to avoid congestion on IA 965). This report outlines the findings and recommendations of the road safety audit team for addressing the safety concerns on this roadway.
Resumo:
Senate File 2355, 85th General Assembly, states the Iowa Department of Transportation shall submit annual reports regarding the implementation of efficiency measures identified in the “Road Use Tax Fund Efficiency Report,” January 2012. This report shall provide details of activities undertaken in the previous year relating to one-time and long-term program efficiencies and partnership efficiencies. Issues to be covered in the reports shall include but are not limited to savings realized from the implementation of particular efficiency measures; updates concerning measures that have not been implemented; efforts involving cities, counties, other jurisdictions, or stakeholder interest groups; any new efficiency measures identified or undertaken; and identification of any legislative action that may be required to achieve efficiencies.
Resumo:
Aquest article presenta el projecte de Millora de Qualitat Docent que ofereix un disseny d’intervenció i materials de suport per a l’ensenyament i aprenentatge de competències en l’espai de seminari. Els eixos en els que es fonamenta la nostra proposta són: la identificació de les competències a assolir, l’autoavaluació com a eina formativa i la tutoria com a espai de suport en aquest procés d’aprenentatge. La intervenció s’adreça als estudiants de Grau i als professors tutors. Els materials de suport elaborats fan referència a: qüestionari online d’autopercepció del nivell de competències genèriques, qüestionari tutorial de detecció de necessitats i disseny del procés tutorial. En base a la reflexió derivada de l’elaboració d’aquest treball i en relació a l’experiència docent universitària com a professors tutors, podem constatar que l’adquisició de les competències és un procés perceptible que requereix d’un temps variable segons cada estudiant, que implica la conscienciació i participació activa del mateix i, que aquest procés requereix de l’espai de tutoria per a poder-lo dur a terme.
Resumo:
Iowa Department of Transportation (Iowa DOT) has re-initiated planning and preliminary design studies to improve U.S. 61 from Memorial Park Road in Burlington north to 1-mile north of IA 78 in Louisa County. The proposed project consists of improving approximately 18 miles of roadway from 2-lanes to 4-lanes and evaluating a potential bypass around Mediapolis.
Resumo:
Embankment subgrade soils in Iowa are generally rated as fair to poor as construction materials. These soils can exhibit low bearing strength, high volumetric instability, and freeze/thaw or wet/dry durability problems. Cement stabilization offers opportunities to improve these soils conditions. The objective of this study was to develop relationships between soil index properties, unconfined compressive strength and cement content. To achieve this objective, a laboratory study was conducted on 28 granular and non-granular materials obtained from 9 active construction sites in Iowa. The materials consisted of glacial till, loess, and alluvium sand. Type I/II portland cement was used for stabilization. Stabilized and unstabilized specimens were prepared using Iowa State University 2 in. by 2 in. compaction apparatus. Specimens were prepared, cured, and tested for unconfined compressive strength (UCS) with and without vacuum saturation. Percent fines content (F200), AASHTO group index (GI), and Atterberg limits were tested before and after stabilization. The results were analyzed using multi-variate statistical analysis to assess influence of the various soil index properties on post-stabilization material properties. Results indicated that F200, liquid limit, plasticity index, and GI of the materials generally decreased with increasing cement content. The UCS of the stabilized specimens increased with increasing cement content, as expected. The average saturated UCS of the unstabilized materials varied between 0 and 57 psi. The average saturated UCS of stabilized materials varied between 44 and 287 psi at 4% cement content, 108 and 528 psi at t 8% cement content, and 162 and 709 psi at 12% cement content. The UCS of the vacuum saturated specimens was on average 1.5 times lower than that of the unsaturated specimens. Multi-variate statistical regression models are provided in this report to predict F200, plasticity index, GI, and UCS after treatment, as a function of cement content and soil index properties.
Resumo:
The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.
Resumo:
During the processing of limestone to produce commercial aggregates, a significant amount of waste limestone screenings is produced. This waste material cannot be used in highway construction because it does not meet current highway specifications. The purpose of this research was to determine if a waste limestone screenings/emulsion mix could be used to construct a base capable of supporting local traffic. A 1.27 mile section of roadway in Linn County was selected for this research. The road was divided into seven sections. Six of the sections were used to test 4" and 6" compacted base thicknesses containing 2.5%, 3.5%, and 4.5% residual asphalt contents. The seventh section was a control section containing untreated waste limestone screenings.
Resumo:
This report addresses the field testing and analysis of those results to establish the behavior of the original Clive Road Bridge that carried highway traffic over Interstate 80 (I-80) in the northwest region of Des Moines, Iowa. The bridge was load tested in 1959, shortly after its construction and in 1993, just prior to its demolition. This report presents some of the results from both field tests, finite element predictions of the behavior of aluminum bridge girders, and load distribution studies.
Resumo:
Fly ash, a by-product of coal-fired electricity generating plants, has for years been promoted as a material suitable for highway construction. Disposal of the large quantities of fly ash produced is expensive and creates environmental concerns. The pozzolanic properties make it promotable as a partial Portland cement replacement in pc concrete, a stabilizer for soil and aggregate in embankments and road bases, and a filler material in grout. Stabilizing soils and aggregates for road construction has the potential of using large quantities of fly ash. Iowa Highway Research Board Project HR-194, "Mission-Oriented Dust Control and Surface Improvement Processes for Unpaved Roads", included short test sections of cement, fly ash, and salvaged granular road material mixed for a base in western Iowa. The research showed that cement fly ash aggregate (CFA) has promise as a stabilizing agent in Iowa. There are several sources of sand that when mixed with fly ash may attain strengths much greater than fly ash mixed with salvaged granular road material at little additional cost
Resumo:
This document summarizes the discussion and findings of the 4th workshop held on October 27–28, 2015 in Frankfort, Kentucky as part of the Technology Transfer Intelligent Compaction Consortium (TTICC) Transportation Pooled Fund (TPF-5(233)) study. The TTICC project is led by the Iowa Department of Transportation (DOT) and partnered by the following state DOTs: California, Georgia, Iowa, Kentucky, Missouri, Ohio, Pennsylvania, Virginia, and Wisconsin. The workshop was hosted by the Kentucky Transportation Cabinet and was organized by the Center for Earthworks Engineering Research (CEER) at Iowa State University of Science and Technology. The objective of the workshop was to generate a focused discussion to identify the research, education, and implementation goals necessary for advancing intelligent compaction for earthworks and asphalt. The workshop consisted of a review of the TTICC goals, state DOT briefings on intelligent compaction implementation activities in their state, voting and brainstorming sessions on intelligent compaction road map research and implementation needs, and identification of action items for TTICC, industry, and Federal Highway Administration (FHWA) on each of the road map elements to help accelerate implementation of the technology. Twenty-three attendees representing the state DOTs participating in this pooled fund study, the FHWA, Iowa State University, University of Kentucky, and industry participated in this workshop.