958 resultados para Riesz fractional advection–dispersion equation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Despite the huge number of works considering fractional derivatives or derivatives on time scales some basic facts remain to be evaluated. Here we will be showing that the fractional derivative of monomials is in fact an entire derivative considered on an appropriate time scale.
Resumo:
The non-linear evolution of nearly one-dimensional undamped waves in a viscous fluid adequately heated from below is shown to be governed by the Kadomtsev-Petviashvili equation. Its solitary-wave solution is explicitly shown. © 1990.
Resumo:
A semirelativistic two-body Dirac equation with an enlarged set of phenomenological potentials, including Breit-type terms, is investigated for the general case of unequal masses. Solutions corresponding to definite total angular momentum and parity are shown to fall into two classes, each one being obtained by solving a system of four coupled first-order radial differential equations. The reduction of each of these systems to a pair of coupled Schrödinger-type equations is also discussed. © 1992 American Institute of Physics.
Resumo:
The new result presented here is a theorem involving series in the three-parameter Mittag-Le er function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional di erential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Le er function.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We define the Virasoro algebra action on imaginary Verma modules for affine and construct an analogue of the Knizhnik-Zamolodchikov equation in the operator form. Both these results are based on a realization of imaginary Verma modules in terms of sums of partial differential operators.
Resumo:
With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America
Resumo:
The present paper aims at contributing to a discussion, opened by several authors, on the proper equation of motion that governs the vertical collapse of buildings. The most striking and tragic example is that of the World Trade Center Twin Towers, in New York City, about 10 years ago. This is a very complex problem and, besides dynamics, the analysis involves several areas of knowledge in mechanics, such as structural engineering, materials sciences, and thermodynamics, among others. Therefore, the goal of this work is far from claiming to deal with the problem in its completeness, leaving aside discussions about the modeling of the resistive load to collapse, for example. However, the following analysis, restricted to the study of motion, shows that the problem in question holds great similarity to the classic falling-chain problem, very much addressed in a number of different versions as the pioneering one, by von Buquoy or the one by Cayley. Following previous works, a simple single-degree-of-freedom model was readdressed and conceptually discussed. The form of Lagrange's equation, which leads to a proper equation of motion for the collapsing building, is a general and extended dissipative form, which is proper for systems with mass varying explicitly with position. The additional dissipative generalized force term, which was present in the extended form of the Lagrange equation, was shown to be derivable from a Rayleigh-like energy function. DOI: 10.1061/(ASCE)EM.1943-7889.0000453. (C) 2012 American Society of Civil Engineers.
Resumo:
We consider a solution of three dimensional New Massive Gravity with a negative cosmological constant and use the AdS/CTF correspondence to inquire about the equivalent two dimensional model at the boundary. We conclude that there should be a close relation of the theory with the Korteweg-de Vries equation. (C) 2012 Elsevier B.V..All rights reserved.
Resumo:
Warrick and Hussen developed in the nineties of the last century a method to scale Richards' equation (RE) for similar soils. In this paper, new scaled solutions are added to the method of Warrick and Hussen considering a wider range of soils regardless of their dissimilarity. Gardner-Kozeny hydraulic functions are adopted instead of Brooks-Corey functions used originally by Warrick and Hussen. These functions allow to reduce the dependence of the scaled RE on the soil properties. To evaluate the proposed method (PM), the scaled RE was solved numerically using a finite difference method with a fully implicit scheme. Three cases were considered: constant-head infiltration, constant-flux infiltration, and drainage of an initially uniform wet soil. The results for five texturally different soils ranging from sand to clay (adopted from the literature) showed that the scaled solutions were invariant to a satisfactory degree. However, slight deviations were observed mainly for the sandy soil. Moreover, the scaled solutions deviated when the soil profile was initially wet in the infiltration case or when deeply wet in the drainage condition. Based on the PM, a Philip-type model was also developed to approximate RE solutions for the constant-head infiltration. The model showed a good agreement with the scaled RE for the same range of soils and conditions, however only for Gardner-Kozeny soils. Such a procedure reduces numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Scaling methods allow a single solution to Richards' equation (RE) to suffice for numerous specific cases of water flow in unsaturated soils. During the past half-century, many such methods were developed for similar soils. In this paper, a new method is proposed for scaling RE for a wide range of dissimilar soils. Exponential-power (EP) functions are used to reduce the dependence of the scaled RE on the soil hydraulic properties. To evaluate the proposed method, the scaled RE was solved numerically considering two test cases: infiltration into relatively dry soils having initially uniform water content distributions, and gravity-dominant drainage occurring from initially wet soil profiles. Although the results for four texturally different soils ranging from sand to heavy clay (adopted from the UNSODA database) showed that the scaled solution were invariant for a wide range of flow conditions, slight deviations were observed when the soil profile was initially wet in the infiltration case or deeply wet in the drainage case. The invariance of the scaled RE makes it possible to generalize a single solution of RE to many dissimilar soils and conditions. Such a procedure reduces the numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils.
Resumo:
The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.